Scatter plots

Read in data.

cols <- c('character','character','character','character','character','character',
          'numeric','character')
d = read.csv("~/Google Drive/AlignerBenchmarkLocal/default_summary.txt", head =T,sep = "\t", colClasses = cols)

d$algorithm = factor(d$algorithm)
nlevels(d$algorithm)
## [1] 14

Calculate the mean an standard deviation.

d$mean = rep(0,dim(d)[1])
d$sd = rep(0,dim(d)[1])


for (i in 1:dim(d)[1]) {
  #print(i)
  d$mean[i] = mean(d[d$species == d$species[i] & d$dataset == d$dataset[i] & d$algorithm == d$algorithm[i] & d$measurement == d$measurement[i] & d$level == d$level[i],]$value)
  d$sd[i] = sd(d[d$species == d$species[i] & d$dataset == d$dataset[i] & d$algorithm == d$algorithm[i] & d$measurement == d$measurement[i] & d$level == d$level[i],]$value) 
}

Functions

Scatter plot version 1.

plot_my_data_scatter <- function(data, measurement1, measurement2, title, filename, write_file = TRUE) {
  # data = k 
  # measurement one of #{recall, precision}
  print(measurement1)
  data$tmp1= data[,colnames(data) == measurement1]
  print(measurement2)
  data$color[data$color == "#F0E442"] = "cornflowerblue"
  data$tmp2 = data[,colnames(data) == measurement2]
  print(head(data))
  print(data$tmp2)
  data$algorithm = factor(data$algorithm)
  print(levels(data$algorithm))
  p = ggplot(data,aes(x=tmp1, y=tmp2, col = algorithm, shape= algorithm, label = algorithm)) + 
    geom_point(size=5) +
    #geom_text(aes(label = tmp), size = 3) +
    ggtitle(title) + theme_gray(base_size=20) + 
    scale_shape_manual(values=1:nlevels(data$algorithm) ) +
    xlab("Algorithm") + xlab(measurement1)+ ylab(measurement2)+ #ylim(c(-0.0001,1.0001)) +
    #scale_x_discrete(limits=data[order(data$tmp,decreasing = TRUE),]$algorithm)  + theme_gray(base_size=17) +#theme_light()+
    #theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) + #scale_fill_brewer(palette="Accent") +
    #scale_fill_manual(values = data$color) +
    scale_color_manual(values = data$color) + 
    #scale_colour_brewer(palette = "Dark2") +
    #geom_text(hjust = 0, nudge_x = 0.005, check_overlap = TRUE) +
    #xlim(c(.875,1.03)) +
    theme(panel.background = element_rect(colour = "gray97", fill="gray97")) + 
    guides(fill=FALSE) 
  print(p)
  if (write_file) {
    ggsave(
      filename,
      width = 8.25,
      height = 5.75,
      dpi = 300
    )
  }
  #data$tmp <- NULL
}

Scatter plot version with labels.

plot_my_data_scatter_labels <- function(data, measurement1, measurement2, title, filename, write_file = TRUE) {
  # data = k 
  # measurement one of #{recall, precision}
  print(measurement1)
  data$tmp1= data[,colnames(data) == measurement1]
  print(measurement2)
  data$color[data$color == "#F0E442"] = "cornflowerblue"
  data$tmp2 = data[,colnames(data) == measurement2]
  print(head(data))
  print(data$tmp2)
  data$algorithm = factor(data$algorithm)
  print(levels(data$algorithm))
  p = ggplot(data,aes(x=tmp1, y=tmp2, col = algorithm, shape= algorithm, label = algorithm)) + 
    geom_point(size=5) +
    #geom_text(aes(label = tmp), size = 3) +
    ggtitle(title) + theme_gray(base_size=20) + 
    scale_shape_manual(values=1:nlevels(data$algorithm) ) +
    xlab("Algorithm") + xlab(measurement1)+ ylab(measurement2)+ #ylim(c(-0.0001,1.0001)) +
    #scale_x_discrete(limits=data[order(data$tmp,decreasing = TRUE),]$algorithm)  + theme_gray(base_size=17) +#theme_light()+
    #theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) + #scale_fill_brewer(palette="Accent") +
    #scale_fill_manual(values = data$color) +
    scale_color_manual(values = data$color) + 
    #scale_colour_brewer(palette = "Dark2") +
    #geom_text(hjust = 0, nudge_x = 0.005, check_overlap = TRUE) +
    #xlim(c(.875,1.03)) +
    theme(panel.background = element_rect(colour = "gray97", fill="gray97")) + 
    #geom_text_repel(point.padding = unit(0.25, "lines")) +
    geom_text_repel(point.padding = unit(0.25, "lines")) +
    guides(fill=FALSE) 
  print(p)
  if (write_file) {
    ggsave(
      filename,
      width = 8.25,
      height = 5.75,
      dpi = 300
    )
  }
  #data$tmp <- NULL
}

Scatter plot version with labels, but no shapes.

plot_my_data_scatter_labels_shapes <- function(data, measurement1, measurement2, title, filename, write_file = TRUE) {
  # data = k 
  # measurement one of #{recall, precision}
  print(measurement1)
  data$tmp1= data[,colnames(data) == measurement1]
  print(measurement2)
  data$color[data$color == "#F0E442"] = "cornflowerblue"
  data$tmp2 = data[,colnames(data) == measurement2]
  print(head(data))
  print(data$tmp2)
  data$algorithm = factor(data$algorithm)
  print(levels(data$algorithm))
  xlim <- range( data$tmp1 )
  ylim <- range( data$tmp2 )
  xlim[2] = 1.01
  ylim[2] = 1.01
  p = ggplot(data,aes(x=tmp1, y=tmp2, col = algorithm, label = algorithm)) + 
    geom_point(size=3,alpha = 0.85) +
    #geom_text(aes(label = tmp), size = 3) +
    ggtitle(title) + theme_gray(base_size=20) + 
    scale_shape_manual(values=1:nlevels(data$algorithm) ) +
    xlab("Algorithm") + xlab(measurement1)+ ylab(measurement2)+ #ylim(c(-0.0001,1.0001)) +
    #scale_x_discrete(limits=data[order(data$tmp,decreasing = TRUE),]$algorithm)  + theme_gray(base_size=17) +#theme_light()+
    #theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) + #scale_fill_brewer(palette="Accent") +
    #scale_fill_manual(values = data$color) +
    scale_color_manual(values = data$color) + 
    #scale_colour_brewer(palette = "Dark2") +
    #geom_text(hjust = 0, nudge_x = 0.005, check_overlap = TRUE) +
    #xlim(c(.875,1.03)) +
    theme(panel.background = element_rect(colour = "gray97", fill="gray97")) + 
    #geom_text_repel(point.padding = unit(0.25, "lines")) +
    geom_text_repel(force = 5, point.padding = unit(0.65, "lines"),arrow = arrow(length = unit(0.01, 'npc'))) +
    ylim(ylim) + xlim(xlim) + 
    guides(fill=FALSE) 
  print(p)
  if (write_file) {
    ggsave(
      filename,
      width = 8.25,
      height = 5.75,
      dpi = 300
    )
  }
  #data$tmp <- NULL
}

Scatter plot version with labels, but no shapes, different theme.

plot_my_data_scatter_bw_theme <- function(data, measurement1, measurement2, title, filename, write_file = TRUE) {
  # data = k 
  # measurement one of #{recall, precision}
  print(measurement1)
  data$tmp1= data[,colnames(data) == measurement1]
  print(measurement2)
  data$color[data$color == "#F0E442"] = "cornflowerblue"
  data$tmp2 = data[,colnames(data) == measurement2]
  print(head(data))
  print(data$tmp2)
  data$algorithm = factor(data$algorithm)
  print(levels(data$algorithm))
  xlim <- range( data$tmp1 )
  ylim <- range( data$tmp2 )
  xlim[2] = 1.01
  ylim[2] = 1.01
  p = ggplot(data,aes(x=tmp1, y=tmp2, col = algorithm, label = algorithm)) + 
    geom_point(size=3,alpha = 0.85) +
    #geom_text(aes(label = tmp), size = 3) +
    ggtitle(title) + theme_bw(base_size=20) + 
    scale_shape_manual(values=1:nlevels(data$algorithm) ) +
    xlab("Algorithm") + xlab(measurement1)+ ylab(measurement2)+ #ylim(c(-0.0001,1.0001)) +
    #scale_x_discrete(limits=data[order(data$tmp,decreasing = TRUE),]$algorithm)  + theme_gray(base_size=17) +#theme_light()+
    #theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) + #scale_fill_brewer(palette="Accent") +
    #scale_fill_manual(values = data$color) +
    scale_color_manual(values = data$color) + 
    #scale_colour_brewer(palette = "Dark2") +
    #geom_text(hjust = 0, nudge_x = 0.005, check_overlap = TRUE) +
    #xlim(c(.875,1.03)) +
    theme(panel.background = element_rect(colour = "gray97", fill="gray97")) + 
    #geom_text_repel(point.padding = unit(0.25, "lines")) +
    geom_text_repel(force = 5, point.padding = unit(0.65, "lines"),arrow = arrow(length = unit(0.01, 'npc'))) +
    ylim(ylim) + xlim(xlim) + 
    guides(fill=FALSE) 
  print(p)
  if (write_file) {
    ggsave(
      filename,
      width = 8.25,
      height = 5.75,
      dpi = 300
    )
  }
  #data$tmp <- NULL
}

Plot the versions

l  = spread(d[,c("species","dataset","replicate","level","algorithm",
                 "color","measurement","mean")], measurement, mean)
k = l[l$species == "human" & l$level == "READLEVEL",]
k = k[k$dataset == "t3",]
plot_my_data_scatter(k,"precision","recall","human read level","read_level/human_t3_READ_scatter.pdf",TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 183   human      t3        r1 READLEVEL         clc        #CC79A7
## 184   human      t3        r1 READLEVEL contextmap2 cornflowerblue
## 185   human      t3        r1 READLEVEL        crac        #D55E00
## 186   human      t3        r1 READLEVEL       gsnap        #999999
## 187   human      t3        r1 READLEVEL       hisat         maroon
## 188   human      t3        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 183              0.0280              0.0242                  NA
## 184              0.0000              0.0191                  NA
## 185              0.0000              0.1041                  NA
## 186              0.0200              0.0131                  NA
## 187              0.0073              0.0013                  NA
## 188              0.0081              0.0037                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 183               NA                   NA                NA    0.9721
## 184               NA                   NA                NA    0.9698
## 185               NA                   NA                NA    0.8856
## 186               NA                   NA                NA    0.9858
## 187               NA                   NA                NA    0.9934
## 188               NA                   NA                NA    0.9878
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 183 0.8463                 NA              NA    0.1015 0.9721 0.8463
## 184 0.6178                 NA              NA    0.3631 0.9698 0.6178
## 185 0.8066                 NA              NA    0.0893 0.8856 0.8066
## 186 0.9198                 NA              NA    0.0471 0.9858 0.9198
## 187 0.1975                 NA              NA    0.7939 0.9934 0.1975
## 188 0.3045                 NA              NA    0.6837 0.9878 0.3045
##  [1] 0.8463 0.6178 0.8066 0.9198 0.1975 0.3045 0.8575 0.9726 0.2329 0.7273
## [11] 0.5682 0.8108 0.4849 0.1253
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels(k,"precision","recall","human read level","read_level/human_t3_READ_scatter_labels.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 183   human      t3        r1 READLEVEL         clc        #CC79A7
## 184   human      t3        r1 READLEVEL contextmap2 cornflowerblue
## 185   human      t3        r1 READLEVEL        crac        #D55E00
## 186   human      t3        r1 READLEVEL       gsnap        #999999
## 187   human      t3        r1 READLEVEL       hisat         maroon
## 188   human      t3        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 183              0.0280              0.0242                  NA
## 184              0.0000              0.0191                  NA
## 185              0.0000              0.1041                  NA
## 186              0.0200              0.0131                  NA
## 187              0.0073              0.0013                  NA
## 188              0.0081              0.0037                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 183               NA                   NA                NA    0.9721
## 184               NA                   NA                NA    0.9698
## 185               NA                   NA                NA    0.8856
## 186               NA                   NA                NA    0.9858
## 187               NA                   NA                NA    0.9934
## 188               NA                   NA                NA    0.9878
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 183 0.8463                 NA              NA    0.1015 0.9721 0.8463
## 184 0.6178                 NA              NA    0.3631 0.9698 0.6178
## 185 0.8066                 NA              NA    0.0893 0.8856 0.8066
## 186 0.9198                 NA              NA    0.0471 0.9858 0.9198
## 187 0.1975                 NA              NA    0.7939 0.9934 0.1975
## 188 0.3045                 NA              NA    0.6837 0.9878 0.3045
##  [1] 0.8463 0.6178 0.8066 0.9198 0.1975 0.3045 0.8575 0.9726 0.2329 0.7273
## [11] 0.5682 0.8108 0.4849 0.1253
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels_shapes(k,"precision","recall","human read level","read_level/human_t3_READ_scatter_labels_shapes.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 183   human      t3        r1 READLEVEL         clc        #CC79A7
## 184   human      t3        r1 READLEVEL contextmap2 cornflowerblue
## 185   human      t3        r1 READLEVEL        crac        #D55E00
## 186   human      t3        r1 READLEVEL       gsnap        #999999
## 187   human      t3        r1 READLEVEL       hisat         maroon
## 188   human      t3        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 183              0.0280              0.0242                  NA
## 184              0.0000              0.0191                  NA
## 185              0.0000              0.1041                  NA
## 186              0.0200              0.0131                  NA
## 187              0.0073              0.0013                  NA
## 188              0.0081              0.0037                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 183               NA                   NA                NA    0.9721
## 184               NA                   NA                NA    0.9698
## 185               NA                   NA                NA    0.8856
## 186               NA                   NA                NA    0.9858
## 187               NA                   NA                NA    0.9934
## 188               NA                   NA                NA    0.9878
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 183 0.8463                 NA              NA    0.1015 0.9721 0.8463
## 184 0.6178                 NA              NA    0.3631 0.9698 0.6178
## 185 0.8066                 NA              NA    0.0893 0.8856 0.8066
## 186 0.9198                 NA              NA    0.0471 0.9858 0.9198
## 187 0.1975                 NA              NA    0.7939 0.9934 0.1975
## 188 0.3045                 NA              NA    0.6837 0.9878 0.3045
##  [1] 0.8463 0.6178 0.8066 0.9198 0.1975 0.3045 0.8575 0.9726 0.2329 0.7273
## [11] 0.5682 0.8108 0.4849 0.1253
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_bw_theme(k,"precision","recall","human read level","read_level/human_t3_READ_scatter_bw_theme.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 183   human      t3        r1 READLEVEL         clc        #CC79A7
## 184   human      t3        r1 READLEVEL contextmap2 cornflowerblue
## 185   human      t3        r1 READLEVEL        crac        #D55E00
## 186   human      t3        r1 READLEVEL       gsnap        #999999
## 187   human      t3        r1 READLEVEL       hisat         maroon
## 188   human      t3        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 183              0.0280              0.0242                  NA
## 184              0.0000              0.0191                  NA
## 185              0.0000              0.1041                  NA
## 186              0.0200              0.0131                  NA
## 187              0.0073              0.0013                  NA
## 188              0.0081              0.0037                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 183               NA                   NA                NA    0.9721
## 184               NA                   NA                NA    0.9698
## 185               NA                   NA                NA    0.8856
## 186               NA                   NA                NA    0.9858
## 187               NA                   NA                NA    0.9934
## 188               NA                   NA                NA    0.9878
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 183 0.8463                 NA              NA    0.1015 0.9721 0.8463
## 184 0.6178                 NA              NA    0.3631 0.9698 0.6178
## 185 0.8066                 NA              NA    0.0893 0.8856 0.8066
## 186 0.9198                 NA              NA    0.0471 0.9858 0.9198
## 187 0.1975                 NA              NA    0.7939 0.9934 0.1975
## 188 0.3045                 NA              NA    0.6837 0.9878 0.3045
##  [1] 0.8463 0.6178 0.8066 0.9198 0.1975 0.3045 0.8575 0.9726 0.2329 0.7273
## [11] 0.5682 0.8108 0.4849 0.1253
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

k = l[l$species == "human" & l$level == "READLEVEL",]
k = k[k$dataset == "t2",]
plot_my_data_scatter(k,"precision","recall","human read level","read_level/human_t2_READ_scatter.pdf",TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 113   human      t2        r1 READLEVEL         clc        #CC79A7
## 114   human      t2        r1 READLEVEL contextmap2 cornflowerblue
## 115   human      t2        r1 READLEVEL        crac        #D55E00
## 116   human      t2        r1 READLEVEL       gsnap        #999999
## 117   human      t2        r1 READLEVEL       hisat         maroon
## 118   human      t2        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 113              0.0141              0.0205                  NA
## 114              0.0000              0.0109                  NA
## 115              0.0000              0.0839                  NA
## 116              0.0188              0.0029                  NA
## 117              0.0189              0.0031                  NA
## 118              0.0192              0.0040                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 113               NA                   NA                NA    0.9770
## 114               NA                   NA                NA    0.9888
## 115               NA                   NA                NA    0.9159
## 116               NA                   NA                NA    0.9969
## 117               NA                   NA                NA    0.9964
## 118               NA                   NA                NA    0.9955
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 113 0.8741                 NA              NA    0.0913 0.9770 0.8741
## 114 0.9655                 NA              NA    0.0236 0.9888 0.9655
## 115 0.9147                 NA              NA    0.0014 0.9159 0.9147
## 116 0.9783                 NA              NA    0.0000 0.9969 0.9783
## 117 0.8937                 NA              NA    0.0843 0.9964 0.8937
## 118 0.9073                 NA              NA    0.0695 0.9955 0.9073
##  [1] 0.8741 0.9655 0.9147 0.9783 0.8937 0.9073 0.9776 0.9745 0.8849 0.9456
## [11] 0.9083 0.9723 0.9155 0.8120
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels(k,"precision","recall","human read level","read_level/human_t2_READ_scatter_labels.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 113   human      t2        r1 READLEVEL         clc        #CC79A7
## 114   human      t2        r1 READLEVEL contextmap2 cornflowerblue
## 115   human      t2        r1 READLEVEL        crac        #D55E00
## 116   human      t2        r1 READLEVEL       gsnap        #999999
## 117   human      t2        r1 READLEVEL       hisat         maroon
## 118   human      t2        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 113              0.0141              0.0205                  NA
## 114              0.0000              0.0109                  NA
## 115              0.0000              0.0839                  NA
## 116              0.0188              0.0029                  NA
## 117              0.0189              0.0031                  NA
## 118              0.0192              0.0040                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 113               NA                   NA                NA    0.9770
## 114               NA                   NA                NA    0.9888
## 115               NA                   NA                NA    0.9159
## 116               NA                   NA                NA    0.9969
## 117               NA                   NA                NA    0.9964
## 118               NA                   NA                NA    0.9955
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 113 0.8741                 NA              NA    0.0913 0.9770 0.8741
## 114 0.9655                 NA              NA    0.0236 0.9888 0.9655
## 115 0.9147                 NA              NA    0.0014 0.9159 0.9147
## 116 0.9783                 NA              NA    0.0000 0.9969 0.9783
## 117 0.8937                 NA              NA    0.0843 0.9964 0.8937
## 118 0.9073                 NA              NA    0.0695 0.9955 0.9073
##  [1] 0.8741 0.9655 0.9147 0.9783 0.8937 0.9073 0.9776 0.9745 0.8849 0.9456
## [11] 0.9083 0.9723 0.9155 0.8120
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels_shapes(k,"precision","recall","human read level","read_level/human_t2_READ_scatter_labels_shapes.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 113   human      t2        r1 READLEVEL         clc        #CC79A7
## 114   human      t2        r1 READLEVEL contextmap2 cornflowerblue
## 115   human      t2        r1 READLEVEL        crac        #D55E00
## 116   human      t2        r1 READLEVEL       gsnap        #999999
## 117   human      t2        r1 READLEVEL       hisat         maroon
## 118   human      t2        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 113              0.0141              0.0205                  NA
## 114              0.0000              0.0109                  NA
## 115              0.0000              0.0839                  NA
## 116              0.0188              0.0029                  NA
## 117              0.0189              0.0031                  NA
## 118              0.0192              0.0040                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 113               NA                   NA                NA    0.9770
## 114               NA                   NA                NA    0.9888
## 115               NA                   NA                NA    0.9159
## 116               NA                   NA                NA    0.9969
## 117               NA                   NA                NA    0.9964
## 118               NA                   NA                NA    0.9955
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 113 0.8741                 NA              NA    0.0913 0.9770 0.8741
## 114 0.9655                 NA              NA    0.0236 0.9888 0.9655
## 115 0.9147                 NA              NA    0.0014 0.9159 0.9147
## 116 0.9783                 NA              NA    0.0000 0.9969 0.9783
## 117 0.8937                 NA              NA    0.0843 0.9964 0.8937
## 118 0.9073                 NA              NA    0.0695 0.9955 0.9073
##  [1] 0.8741 0.9655 0.9147 0.9783 0.8937 0.9073 0.9776 0.9745 0.8849 0.9456
## [11] 0.9083 0.9723 0.9155 0.8120
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_bw_theme(k,"precision","recall","human read level","read_level/human_t2_READ_scatter_bw_theme.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##     species dataset replicate     level   algorithm          color
## 113   human      t2        r1 READLEVEL         clc        #CC79A7
## 114   human      t2        r1 READLEVEL contextmap2 cornflowerblue
## 115   human      t2        r1 READLEVEL        crac        #D55E00
## 116   human      t2        r1 READLEVEL       gsnap        #999999
## 117   human      t2        r1 READLEVEL       hisat         maroon
## 118   human      t2        r1 READLEVEL      hisat2        maroon3
##     aligned_ambiguously aligned_incorrectly deletions_precision
## 113              0.0141              0.0205                  NA
## 114              0.0000              0.0109                  NA
## 115              0.0000              0.0839                  NA
## 116              0.0188              0.0029                  NA
## 117              0.0189              0.0031                  NA
## 118              0.0192              0.0040                  NA
##     deletions_recall insertions_precision insertions_recall precision
## 113               NA                   NA                NA    0.9770
## 114               NA                   NA                NA    0.9888
## 115               NA                   NA                NA    0.9159
## 116               NA                   NA                NA    0.9969
## 117               NA                   NA                NA    0.9964
## 118               NA                   NA                NA    0.9955
##     recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 113 0.8741                 NA              NA    0.0913 0.9770 0.8741
## 114 0.9655                 NA              NA    0.0236 0.9888 0.9655
## 115 0.9147                 NA              NA    0.0014 0.9159 0.9147
## 116 0.9783                 NA              NA    0.0000 0.9969 0.9783
## 117 0.8937                 NA              NA    0.0843 0.9964 0.8937
## 118 0.9073                 NA              NA    0.0695 0.9955 0.9073
##  [1] 0.8741 0.9655 0.9147 0.9783 0.8937 0.9073 0.9776 0.9745 0.8849 0.9456
## [11] 0.9083 0.9723 0.9155 0.8120
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

k = l[l$species == "human" & l$level == "READLEVEL",]
k = k[k$dataset == "t1",]
plot_my_data_scatter(k,"precision","recall","human read level","read_level/human_t1_READ_scatter.pdf",TRUE)
## [1] "precision"
## [1] "recall"
##    species dataset replicate     level   algorithm          color
## 43   human      t1        r1 READLEVEL         clc        #CC79A7
## 44   human      t1        r1 READLEVEL contextmap2 cornflowerblue
## 45   human      t1        r1 READLEVEL        crac        #D55E00
## 46   human      t1        r1 READLEVEL       gsnap        #999999
## 47   human      t1        r1 READLEVEL       hisat         maroon
## 48   human      t1        r1 READLEVEL      hisat2        maroon3
##    aligned_ambiguously aligned_incorrectly deletions_precision
## 43              0.0119              0.0202                  NA
## 44              0.0000              0.0098                  NA
## 45              0.0000              0.0806                  NA
## 46              0.0191              0.0022                  NA
## 47              0.0184              0.0026                  NA
## 48              0.0196              0.0029                  NA
##    deletions_recall insertions_precision insertions_recall precision
## 43               NA                   NA                NA    0.9773
## 44               NA                   NA                NA    0.9899
## 45               NA                   NA                NA    0.9193
## 46               NA                   NA                NA    0.9977
## 47               NA                   NA                NA    0.9972
## 48               NA                   NA                NA    0.9969
##    recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 43 0.8771                 NA              NA    0.0908 0.9773 0.8771
## 44 0.9765                 NA              NA    0.0137 0.9899 0.9765
## 45 0.9192                 NA              NA    0.0002 0.9193 0.9192
## 46 0.9787                 NA              NA    0.0000 0.9977 0.9787
## 47 0.9676                 NA              NA    0.0114 0.9972 0.9676
## 48 0.9697                 NA              NA    0.0078 0.9969 0.9697
##  [1] 0.8771 0.9765 0.9192 0.9787 0.9676 0.9697 0.9804 0.9744 0.9507 0.9679
## [11] 0.9481 0.9768 0.9467 0.9464
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels(k,"precision","recall","human read level","read_level/human_t1_READ_scatter_labels.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##    species dataset replicate     level   algorithm          color
## 43   human      t1        r1 READLEVEL         clc        #CC79A7
## 44   human      t1        r1 READLEVEL contextmap2 cornflowerblue
## 45   human      t1        r1 READLEVEL        crac        #D55E00
## 46   human      t1        r1 READLEVEL       gsnap        #999999
## 47   human      t1        r1 READLEVEL       hisat         maroon
## 48   human      t1        r1 READLEVEL      hisat2        maroon3
##    aligned_ambiguously aligned_incorrectly deletions_precision
## 43              0.0119              0.0202                  NA
## 44              0.0000              0.0098                  NA
## 45              0.0000              0.0806                  NA
## 46              0.0191              0.0022                  NA
## 47              0.0184              0.0026                  NA
## 48              0.0196              0.0029                  NA
##    deletions_recall insertions_precision insertions_recall precision
## 43               NA                   NA                NA    0.9773
## 44               NA                   NA                NA    0.9899
## 45               NA                   NA                NA    0.9193
## 46               NA                   NA                NA    0.9977
## 47               NA                   NA                NA    0.9972
## 48               NA                   NA                NA    0.9969
##    recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 43 0.8771                 NA              NA    0.0908 0.9773 0.8771
## 44 0.9765                 NA              NA    0.0137 0.9899 0.9765
## 45 0.9192                 NA              NA    0.0002 0.9193 0.9192
## 46 0.9787                 NA              NA    0.0000 0.9977 0.9787
## 47 0.9676                 NA              NA    0.0114 0.9972 0.9676
## 48 0.9697                 NA              NA    0.0078 0.9969 0.9697
##  [1] 0.8771 0.9765 0.9192 0.9787 0.9676 0.9697 0.9804 0.9744 0.9507 0.9679
## [11] 0.9481 0.9768 0.9467 0.9464
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_labels_shapes(k,"precision","recall","human read level","read_level/human_t1_READ_scatter_labels_shapes.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##    species dataset replicate     level   algorithm          color
## 43   human      t1        r1 READLEVEL         clc        #CC79A7
## 44   human      t1        r1 READLEVEL contextmap2 cornflowerblue
## 45   human      t1        r1 READLEVEL        crac        #D55E00
## 46   human      t1        r1 READLEVEL       gsnap        #999999
## 47   human      t1        r1 READLEVEL       hisat         maroon
## 48   human      t1        r1 READLEVEL      hisat2        maroon3
##    aligned_ambiguously aligned_incorrectly deletions_precision
## 43              0.0119              0.0202                  NA
## 44              0.0000              0.0098                  NA
## 45              0.0000              0.0806                  NA
## 46              0.0191              0.0022                  NA
## 47              0.0184              0.0026                  NA
## 48              0.0196              0.0029                  NA
##    deletions_recall insertions_precision insertions_recall precision
## 43               NA                   NA                NA    0.9773
## 44               NA                   NA                NA    0.9899
## 45               NA                   NA                NA    0.9193
## 46               NA                   NA                NA    0.9977
## 47               NA                   NA                NA    0.9972
## 48               NA                   NA                NA    0.9969
##    recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 43 0.8771                 NA              NA    0.0908 0.9773 0.8771
## 44 0.9765                 NA              NA    0.0137 0.9899 0.9765
## 45 0.9192                 NA              NA    0.0002 0.9193 0.9192
## 46 0.9787                 NA              NA    0.0000 0.9977 0.9787
## 47 0.9676                 NA              NA    0.0114 0.9972 0.9676
## 48 0.9697                 NA              NA    0.0078 0.9969 0.9697
##  [1] 0.8771 0.9765 0.9192 0.9787 0.9676 0.9697 0.9804 0.9744 0.9507 0.9679
## [11] 0.9481 0.9768 0.9467 0.9464
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"

plot_my_data_scatter_bw_theme(k,"precision","recall","human read level","read_level/human_t1_READ_scatter_bw_theme.pdf", TRUE)
## [1] "precision"
## [1] "recall"
##    species dataset replicate     level   algorithm          color
## 43   human      t1        r1 READLEVEL         clc        #CC79A7
## 44   human      t1        r1 READLEVEL contextmap2 cornflowerblue
## 45   human      t1        r1 READLEVEL        crac        #D55E00
## 46   human      t1        r1 READLEVEL       gsnap        #999999
## 47   human      t1        r1 READLEVEL       hisat         maroon
## 48   human      t1        r1 READLEVEL      hisat2        maroon3
##    aligned_ambiguously aligned_incorrectly deletions_precision
## 43              0.0119              0.0202                  NA
## 44              0.0000              0.0098                  NA
## 45              0.0000              0.0806                  NA
## 46              0.0191              0.0022                  NA
## 47              0.0184              0.0026                  NA
## 48              0.0196              0.0029                  NA
##    deletions_recall insertions_precision insertions_recall precision
## 43               NA                   NA                NA    0.9773
## 44               NA                   NA                NA    0.9899
## 45               NA                   NA                NA    0.9193
## 46               NA                   NA                NA    0.9977
## 47               NA                   NA                NA    0.9972
## 48               NA                   NA                NA    0.9969
##    recall skipping_precision skipping_recall unaligned   tmp1   tmp2
## 43 0.8771                 NA              NA    0.0908 0.9773 0.8771
## 44 0.9765                 NA              NA    0.0137 0.9899 0.9765
## 45 0.9192                 NA              NA    0.0002 0.9193 0.9192
## 46 0.9787                 NA              NA    0.0000 0.9977 0.9787
## 47 0.9676                 NA              NA    0.0114 0.9972 0.9676
## 48 0.9697                 NA              NA    0.0078 0.9969 0.9697
##  [1] 0.8771 0.9765 0.9192 0.9787 0.9676 0.9697 0.9804 0.9744 0.9507 0.9679
## [11] 0.9481 0.9768 0.9467 0.9464
##  [1] "clc"         "contextmap2" "crac"        "gsnap"       "hisat"      
##  [6] "hisat2"      "mapsplice2"  "novoalign"   "olego"       "rum"        
## [11] "soapsplice"  "star"        "subread"     "tophat2"