University of Pennsylvania BIOL4536 Fall 2023 Professor: Gregory R. Grant Final Exam

December 14th, 2023

Name:

33 Questions, 3 points each (one point is free)

Question 1. Suppose we are doing a pathway enrichment analysis. For a set of 200 DE genes, we calculate one enrichment *p*-value for each

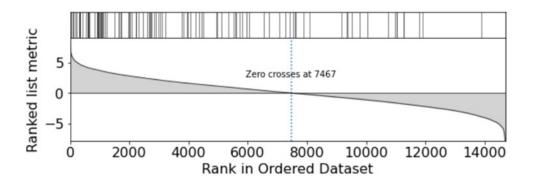
(A) Gene on the list

(B) Gene Set

(C) Pair: a gene G on the list and a Gene set

(D) pair of gene sets

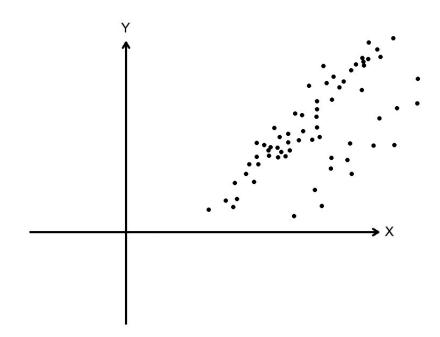
Question 2. True or False. A pathway enrichment analysis *p*-value is specific to one species.

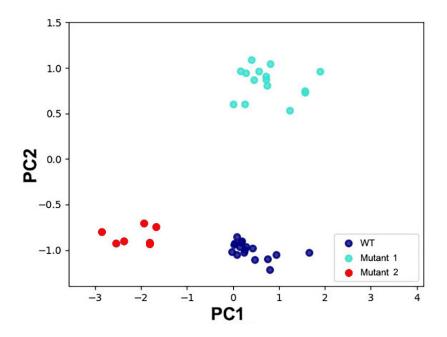

Question 3. True or False. Input to a pathway analysis is a list of gene identifiers, not a list of isoforms.

Question 4. Consider the following pathway enrichment results table. Should we consider "cytoplasmic translation" to be significant?

Category	¢ Term	RT Genes	Coun	t≑ <u>%</u> ≑ <u>P-Value</u> ≑ Benjamini
GOTERM_CC_DIRECT	cytosol	RT	64	32.5 3.8E-6 1.1E-3
GOTERM_CC_DIRECT	nucleus	RI	82	41.6 7.3E-5 1.1E-2
GOTERM_MF_DIRECT	aminoacyl-tRNA ligase activity	RT	5	2.5 4.6E-4 8.7E-2
GOTERM_MF_DIRECT	protein kinase binding	RI 🚃	15	7.6 4.8E-4 8.7E-2
GOTERM_BP_DIRECT	translation	RI	11	5.6 6.2E-4 7.2E-1
GOTERM_CC_DIRECT	cytosolic ribosome	RI 🖬	6	3.0 7.1E-4 7.0E-2
GOTERM_CC_DIRECT	cytoskeleton	RI	25	12.7 9.6E-4 7.0E-2
GOTERM_MF_DIRECT	protein binding	RI	67	34.0 9.7E-4 1.2E-1
GOTERM_BP_DIRECT	tRNA aminoacylation for protein translation	RI	4	2.0 3.6E-3 1.0E0
GOTERM_MF_DIRECT	hydrolase activity, acting on glycosyl bonds	RI 🖬	5	2.5 5.0E-3 4.1E-1
GOTERM_CC_DIRECT	nucleoplasm	RI	45	22.8 5.4E-3 2.3E-1
GOTERM_MF_DIRECT	aminoacyl-tRNA editing activity	RI 🖬	3	1.5 5.6E-3 4.1E-1
GOTERM_BP_DIRECT	metabolic process	RI 🚃	7	3.6 6.3E-3 1.0E0
GOTERM_CC_DIRECT	Golgi apparatus	RI	23	11.7 6.6E-3 2.3E-1
GOTERM_CC_DIRECT	histone deacetylase complex	RI	4	2.0 6.6E-3 2.3E-1
GOTERM_CC_DIRECT	ribosome	RI 🚃	7	3.6 7.4E-3 2.3E-1
GOTERM_CC_DIRECT	membrane	RI	76	38.6 7.4E-3 2.3E-1
GOTERM_CC_DIRECT	polysome	RI	4	2.0 8.0E-3 2.3E-1
GOTERM_BP_DIRECT	cytoplasmic translation	RI	5	2.5 8.2E-3 1.0E0
GOTERM_CC_DIRECT	cytosolic small ribosomal subunit	RI 冒	4	2.0 8.9E-3 2.4E-1
GOTERM_CC_DIRECT	microtubule organizing center	RI 🔳	6	3.0 9.7E-3 2.4E-1
GOTERM_BP_DIRECT	regulation of translation	RI 🖬	6	3.0 1.1E-2 1.0E0
GOTERM_BP_DIRECT	cellular response to epidermal growth factor stimulus	RI	4	2.0 1.2E-2 1.0E0
GOTERM_CC_DIRECT	trans-Golgi network	RI 🚃	7	3.6 1.3E-2 2.8E-1
GOTERM_BP_DIRECT	carbohydrate metabolic process	RI 🚃	7	3.6 1.3E-2 1.0E0
GOTERM_CC_DIRECT	cell projection	RI 🚃	19	9.6 1.4E-2 3.0E-1
GOTERM_CC_DIRECT	endoplasmic reticulum	RI	24	12.2 1.5E-2 3.0E-1
UP_KW_DOMAIN	Zinc-finger	RI 🚃	23	11.7 1.7E-2 3.0E-1
GOTERM_MF_DIRECT	RNA binding	RI 🚃	16	8.1 1.7E-2 8.3E-1
GOTERM_MF_DIRECT	valine-tRNA ligase activity	RI 🖥	2	1.0 1.8E-2 8.3E-1

Question 5. In the following GSEA diagram, the black vertical lines at the top represent


- (A) The genes in the gene set of interest
- (B) The genes outside the gene set of interest
- (C) The DE genes
- (D) The SNP locations that are eQTL's
- (E) Indels

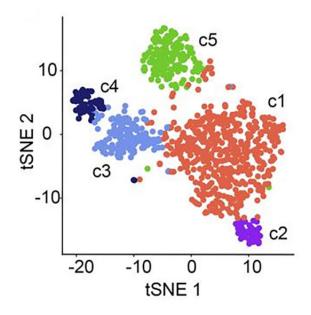

Question 6. True or False. A "subspace" of *n*-dimensional space must contain the origin.

Question 7. True or False. In Principle Components Analysis, the first principle component PC1 captures the technical variation and the second principle component PC2 captures the biological variation.

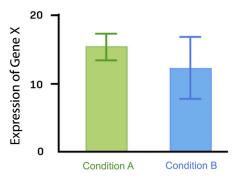
Question 8. On the following graph, draw in (approximately) the line correponding to the first principle component subspace PC1.

Question 9. Suppose you have RNA-Seq data from three experimental conditions WT, Mutant 1 and Mutant 2 and you get the following PCA plot. Suppose the loadings for PC1 are non-zero only in pathway P_1 and the loadings for PC2 are non-zero only in pathway P_2 . Interpret the following PCA plot.

Question 10. True or False. A Mann-Whitney test cannot declare significance of a comparison where there are two replicates per group, no matter what the data.


Question 11. The Mann-Whitney test is robust to outliers because (circle the one correct answer)

- (A) It uses a normal distribution which has thin tails.
- (B) Because it requires a lot of replicates, so outliers are negligible.
- (C) It is based on ranking, which is blind to outliers.
- (D) Because Mann-Whitney is a permutation test.


Question 12. Suppose a permutation *p*-value is calculated using all permutations. Let *N* be the total number of permutations. True or False: the smallest the permutation *p*-value can be is 1/N

Question 13. In the following single cell RNA-Seq tSNE plot, each point represents: (circle one)

- (A) One gene
- (B) One subject
- (C) One pathway
- (D) One significance level
- (E) One cell

Question 14. Consider the data in the following graph of expression of Gene X between Condition A and Condition B. Explain why we should not apply a parametric *T*-test here.

Question 15. The table below shows all 20 possible rankings of a 3-versus-3 comparison for a Mann-Whitney analysis. The table is split over two rows since it was too wide to display on one. Each ranking is equally likely, so each has probability 1/20 = 0.05. What is the probability that R = 9? In other words, what is P(R = 9)?

Cond.1	1,2,3	1,2,4	1,2,5	1,2,6	1,3,4	1,3,5	1,3,6	1,4,5	1,4,6	1,5,6
Cond. 2	4,5,6	3,5,6	3,4,6	3,4,5	2,5,6	2,4,6	2,4,5	2,3,6	2,3,5	2,3,4
R	6	7	8	9	8	9	10	10	11	12
Cond.1	2,3,4	2,3,5	2,3,6	2,4,5	2,4,6	2,5,6	3,4,5	3,4,6	3,5,6	4,5,6
Cond. 2	1,5,6	1,4,6	1,4,5	1,3,6	1,3,5	1,3,4	1,2,6	1,2,5	1,2,4	1,2,3
R	9	10	11	11	12	13	12	13	14	15

Question 16. For the majority of GWAS studies, SNP calling is done with (choose one)

- (A) Microarrays
- (B) DNA-Seq
- (C) PCR

Question 17. Every point on a Manhattan plot represents (choose one)

- (A) One subject
- (B) One phenotype
- (C) One SNP
- (D) One codon

Question 18. True or False. Fine Mapping refers to finding the exact location of the most significant SNP in a given locus.

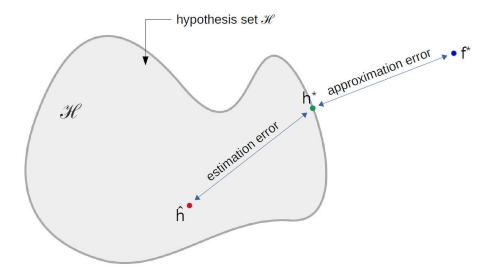
Question 19. In a manhattan plot explain the rationale behind why we graph the *Y*-axis as $-\log_{10}(p)$ and not just *p* (where *p* is the *p*-value).

Question 20. A "polygenic risk score" is (circle all that apply):

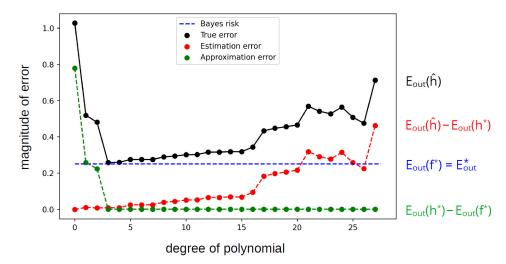
- (A) Used for assessing disease risk
- (B) Is based on multiple SNPs
- (C) Is used to infer mechanism of action
- (D) Might be found in a person's medical chart
- (E) Is based on gene expression.

Question 21. True or False. Supervised learning is about prediction and unsupervised learning is about classification.

Question 22. In the Learning Inequality, why is it uninformative when the hypothesis set \mathcal{H} consists of all straight lines in the plane?

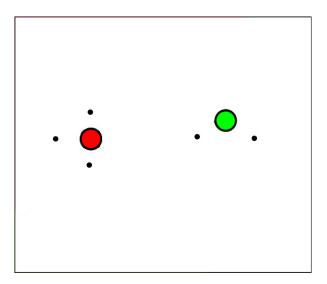

$$P(|E_{in}(h) - E_{out}(h)| > \varepsilon) \leq 2|\mathscr{H}| \cdot e^{-2n\varepsilon^2}$$

Question 23. In supervised learning regression, what is learned from the training data?


- (A) The form of the model
- (B) The parameters of the model
- (C) The hypothesis set
- (D) The test data

Question 24. In the figure, which error is increased by overfitting?

- (A) Estimation Error
- (B) Approximation Error



Question 25. True or False. The green points decrease to almost zero but can never be exactly zero.

Question 26. The figure shows *k*-means clustering with five data points and k = 2. On the next iteration of the algorithm, one of these is correct, which one?

- (A) Cluster membership and the centroid locations will change.
- (B) Cluster membership will change but the centroid locations will not change.
- (C) Cluster membership will not change, but the centroid locations will change.
- (D) Neither cluster membership, nor the centroid locations will change.

Question 27. Consider the following definition for the magic_test function:

If we call the function with this code:

input_data |> magic_test()

which argument is assigned the contents of 'input_data'?

(A) trick
(B) test
(C) has_rabbit
(D) wow_factor

Question 28. Consider the 'de_results' data frame of differential expression results:

# A	tibble: 6 x 6					
g	gene_id	log2FC	pvalue	padj	minus_log10_pvalue	DE_status
<	chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1 E	ENSMUSG00000058006	1.12	1.90e-11	1.63e-10	10.7	Non-DE
2 E	ENSMUSG00000021336	-1.32	1.34e- 8	7.94e- 8	7.87	Non-DE
3 E	ENSMUSG00000011158	-0.199	1.30e- 1	1.93e- 1	0.885	Non-DE
4 E	ENSMUSG00000032085	0.246	1.47e- 1	2.14e- 1	0.833	Non-DE
5 E	ENSMUSG0000004364	0.0278	8.19e- 1	8.64e- 1	0.0866	Non-DE
6 E	ENSMUSG00000113428	0.0823	8.22e- 1	8.66e- 1	0.0853	Non-DE

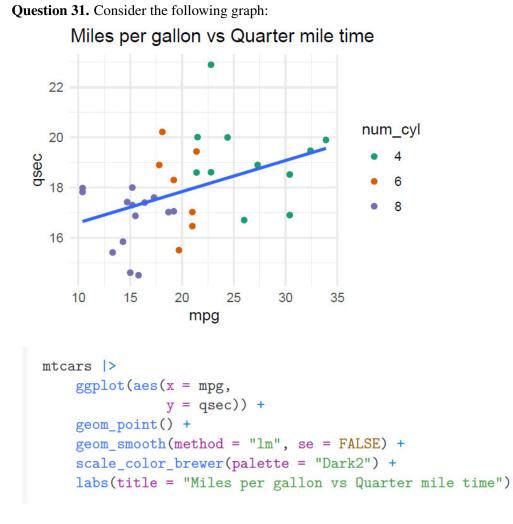
Which R code would sort the 'de_results' data frame by the values in the log2FC column, from largest to smallest?

```
(A) arrange(log2FC, de_results)(B) arrange(desc(log2FC), de_results)(C) arrange(de_results, desc(log2FC))(D) arrange(de_results, log2FC)
```

Question 29. Fill in the blank with the correct R operator to assign the value of 0.01 to the variable deg_cutoff

deg_cutoff _____ 0.01

Question 30. Consider these two tibbles:


```
Tibble A:
# A tibble: 24 x 3
  gene_name sample_id read_counts
 <chr>
          <chr>
                            <int>
1 Lcn2
           Saline_9574
                               63
         Saline_9575
2 Lcn2
                               41
          IL1B_9577
3 Lcn2
                            39976
           IL1B_9578
4 Lcn2
                            44056
           Saline_9574
5 Ido2
                             1734
6 Ido2
           Saline_9575
                             1129
# i 18 more rows
```

Tibble B:

#	A tibble:	6 x 5			
	gene_name	Saline_9574	Saline_9575	IL1B_9577	IL1B_9578
	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
1	Lcn2	63	41	39976	44056
2	Ido2	1734	1129	280	230
3	Fam83a	6	5	94	210
#	i 3 more 1	rows			

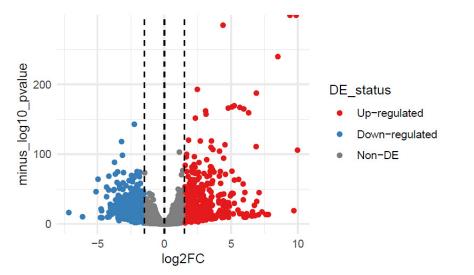
Which R function would you use to reshape Tibble B into Tibble A?

(A) left_join()
(B) pivot_longer()
(C) pivot_wider()
(D) bind_rows()

In which *ggplot2* function would you add the color 'color=num_cyl' aesthetic mapping to recreate this graph? (A) ggplot()

- (B) geom_point()
- (C) geom_smooth()
- (D) scale_color_brewer()

Question 32. Circle the R pipe operator


(A) <= (B) | > (C) < -(D) ==

9

Question 33. Consider the 'de_results' data frame of differential expression results:

#	A tibble: 6 x 6					
	gene_id	log2FC	pvalue	padj	minus_log10_pvalue	DE_status
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	ENSMUSG00000058006	1.12	1.90e-11	1.63e-10	10.7	Non-DE
2	ENSMUSG00000021336	-1.32	1.34e- 8	7.94e- 8	7.87	Non-DE
3	ENSMUSG00000011158	-0.199	1.30e- 1	1.93e- 1	0.885	Non-DE
4	ENSMUSG0000032085	0.246	1.47e- 1	2.14e- 1	0.833	Non-DE
5	ENSMUSG0000004364	0.0278	8.19e- 1	8.64e- 1	0.0866	Non-DE
6	ENSMUSG00000113428	0.0823	8.22e- 1	8.66e- 1	0.0853	Non-DE

Here's a volcano plot made from the 'de_results' data frame:

Which geom_ function(s) would you need to create this volcano plot (circle all that apply).

- (A) geom_hline()
- (B) geom_vline()
- (C) geom_violin()
- (D) geom_point()