PATHWAY ENRICHMENT ANALYSIS

Question 1. True or False. Suppose we are doing a pathway enrichment analysis. For a set of 200 DE genes, we calculate one enrichment \(p \)-value for each gene.

Question 2. True or False. You may have to convert gene identifiers to use a particular pathway enrichment tool.

Question 3. True or False. Pathways are specific to protein coding genes.

Question 4. True or False. In gene set enrichment analysis, there’s one \(p \)-value for each of the categories of gene sets: Biological Process, Molecular Function and Cellular Component.

Question 5. Explain why you might want to upload your own “background” genes in a pathway enrichment analysis.

Question 6. What is one alternative algorithm to using the hypergeometric test?

Question 7. True or False. Gene Set Enrichment Analysis (GSEA) utilizes a random walk to define its score.

Question 8. The hypergeometric distribution is
- (A) Discrete
- (B) Continuous

Question 9. Saying a step taken while doing a hypothesis test is “anti-conservative” means it tends to make the \(p \)-value:
- (A) Larger
- (B) Smaller
- (C) It doesn’t mean either of those things

Question 10. True or False. Pathway enrichment analysis based on the hypergeometric test can be used for any list of genes, not just ones from a DE analysis.

DIMENSIONALITY REDUCTION

Question 1. Suppose we have a spreadsheet of gene expression data with 27,132 genes (rows) from 10 subjects (columns). Circle all that are true
- (A) Each gene is a point in 27132-dimensional space.
- (B) Each subject is a point in 27132-dimensional space.
- (C) Each gene is a point in 10-dimensional space.
- (D) Each subject is a point in 10-dimensional space.
Question 2. Suppose there are 30,000 genes and we represent subjects’ gene expression at these genes as points in 30,000-dimensional space. Explain why we care about the euclidean distances of these points in space.

Question 3. True or False. It is possible for a latent variable to combine the information from all genes (dimensions) into one variable (dimension).

Question 4. Interpret PC1 and PC2 in the following plot PCA plot

![PCA plot](image)

Question 5. Suppose you have RNA-Seq data from Treatment and Control and you get the following PCA plot. Suppose the loadings for PC1 are positive only in pathway P_1 and the loadings for PC2 are positive only in pathway P_2. Which pathway P_1 or P_2 would you expect to have differential means between treatment and control?

![PCA plot](image)

Question 6. Consider the following PCA plot. Interpret the latent variable given by PC2.

![PCA plot](image)
Question 7. True or False. The data in the figure below calls for non-linear methods.

Question 8. Suppose a set of genes are differentially expressed between two experimental conditions C_1 and C_2. Suppose the variation within each of the two conditions is greater than the variation between the two conditions. Which principle component PC1 or PC2 is more likely to capture the biological difference of interest between the conditions?
Question 9. Suppose we compare control mice to mice that have undergone a drug treatment. Give an example of a possible source of biological variation that is not of primary interest.

Question 10. In the diagram below, project the point \((2, 1)\) onto the PC1 and give its value as a latent variable.

![Diagram](image)

NON-PARAMETRIC METHODS

Question 1. Suppose you have a set of observed (random) ratios and you want to test if the mean of the distribution of the ratios is one. What would be a sensible permutation of the data?

Question 2. True or False. In a permutation test, replacing the statistic \(S\) with \(cS\) where \(c\) is a constant, does not change the \(p\)-values.

Question 3. Consider the repeated measures data on the left spreadsheet. Does the spreadsheet on the right constitute a valid permutation for a repeated measures permutation test?
Question 4. True or False. In a permutation test, significance can only be obtained if the value of the statistic on the unpermuted data is greater or equal to the value of the statistic on every permutation.

Question 5. True or False. You can apply a paired test to unpaired data, but not the other way around.

Question 6. Suppose you have two sequences S_1 and S_2 and you align them with Smith-Waterman and the optimal local alignment score is R. Suppose you want to test if the two sequences are actually related, so in other words you want to know if R is significantly large. You want to design a permutation test. What should you permute?

Question 7. Suppose we want to compare the expression of a gene between two different times of day. Give one reason why we might prefer a repeated measures design and give one reason why a repeated measures design might not be possible.

Question 8. In a Mann-Whitney for four versus four replicates, recall R is the sum of the ranks in one group. What is the largest and smallest R could be?

Question 9. In regression we assume the random error term ϵ is normally distributed. True or False, this assumption about ϵ constitutes a “parametric” assumption.

Question 10. True or False. It is possible to design a test with false-positive rate equal to zero.

GWAS

Question 1. True or False. In GWAS if a variant causes a disease 100% of the time, then it has low penetrance.

Question 2. True or False. GWAS in strictly for associating SNPs with pathological conditions and diseases.

Question 3. Consider a short contiguous stretch of genome on chromosome 10 of length 1Mb. Explain why there’s at least a 75% chance that stretch of genome will not be passed on to a particular offspring in the next generation.

Question 4. Suppose a chromosome is 100Mb long and two SNPs are 1000 bases apart. Suppose there’s one crossover on that chromosome in one generation that occurs with equal probability anywhere on the chromosome. What’s the probability that the crossover happens between the two SNPs?
Question 5. True or False. The term “cis” means proximal and the term “trans” means distant.

Question 6. Height is associated with (circle one)
 (A) One gene
 (B) Approximately 10 genes
 (C) Approximately 100 genes
 (D) Approximately 1000 genes
 (E) At least 1/3 of all genes

Question 7. True or False. GWAS is strictly for associating traits with non-synonymous SNP’s in protein coding genes.

Question 8. True or False. Determining the causitive SNPs is called the “Fine Mapping Problem”.

Question 9. True or False. GWAS associates SNPs with phenotypes thereby revealing their mechanism of action.

Question 10. For multiple testing corrections in GWAS, both FWER and FDR approaches are taken in practice.

MACHINE LEARNING

Question 1. True or False. We need training data where we know the truth to do both supervised and unsupervised learning.

Question 2. True or False. If the learning algorithm finds h^* then $\hat{h} = h^*$.

Question 3. True or False. If the Bayes’ Risk of a model is zero, then there’s a deterministic relationship between the independent and dependent variables.
Question 4. Referring to the figure below, connect the things on the left to the corresponding things on the right.

![Diagram](image)

- The true model
- The best model in the hypothesis set
- The output of the learning algorithm
- \(\hat{h} \)
- \(f^* \)
- \(h^* \)

Question 5. True or False. The 0-1 loss function is for a dependent variable which is categorical and quadratic loss is for a dependent variable which is continuous.

Question 6. Refer to the diagram below. True or False, the Learning algorithm always finds the best (most accurate) function in \(\mathcal{H} \).

![Diagram](image)
Question 7. Consider the linear model with \(n \) independent variables

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \epsilon
\]

To train the model we need at least
(A) 2 data points.
(B) \(n - 1 \) data points.
(C) \(n + 1 \) data points.
(D) \(n^2 \) data points.

Question 8. True or False. In supervised learning if, after evaluation using the test data, the model is further refined, then the test data needs to be replaced by the training data to do final evaluation of the model.

Question 9. In supervised learning, let \(f^* \) be the true model of the data (as usual). True or False, \(E_{in}(f^*) \) necessarily equals \(E_{out}(f^*) \).

Question 10. True or False. Overfitting is only a problem in supervised learning, not unsupervised.

Question 11. In \(k \)-means clustering, the iterative part is to:
(A) Determine \(k \).
(B) Determine the clusters.

R ANALYSIS

Question 1. What is the name of the R function used to download and install packages from CRAN?

Question 2. Circle the R ’less than or equals’ operator:
(A) \(<=\)
(B) \(<\)
(C) \(<-\)
(D) \(==\)

Question 3. Here are the first six lines from a text file:

```
species,island,bill_length_mm,year
Adelie,Torgersen,39.1,2007
Adelie,Torgersen,39.5,2007
Adelie,Torgersen,40.3,2007
Adelie,Torgersen,NA,2007
Adelie,Torgersen,36.7,2007
```

For each column name, draw a line connecting it with the most appropriate R data type to represent the values contained in that column. *Note: You may not need to use all data types, and you may need to draw lines connecting multiple columns to the same data type.*
Question 4. Which of the following lines of code will return the 'species', 'island' and 'year' columns from the penguins data frame? (circle all that apply)

(A) `select(species, island, year, penguins)`
(B) `select(penguins, species, island, year)`
(C) `select(species, island, year, .data=penguins)`
(D) `select(penguins=.data, species, island, year)`

Question 5. Consider the following table of differential expression results:

<table>
<thead>
<tr>
<th>gene_id</th>
<th>baseMean</th>
<th>log2FoldChange</th>
<th>pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td><chr></td>
<td><dbl></td>
<td><dbl></td>
<td><dbl></td>
</tr>
<tr>
<td>ENSMUSG000000026822</td>
<td>23019.</td>
<td>9.87 0</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG000000040026</td>
<td>22475.</td>
<td>9.41 0</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG000000021091</td>
<td>50363.</td>
<td>4.39 1.25e-285</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG000000057465</td>
<td>50544.</td>
<td>8.50 1.44e-240</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG00000016024</td>
<td>3589.</td>
<td>2.47 1.45e-193</td>
<td></td>
</tr>
<tr>
<td>ENSMUSG00000051439</td>
<td>934.</td>
<td>6.89 2.99e-188</td>
<td></td>
</tr>
</tbody>
</table>

Fill in the blanks to make this code perform a Benjamini-Hochberg multiple-testing correction on the data in the 'pvalue' column and store the result in a new column named 'padj'

```r
il1b_de_results |> 

  ____ (____ = p.adjust(______, method = "BH"))
```

Question 6. Consider the following `ggplot2` code:

```r
mtcars |> 

ggplot(aes(x = mpg, 
          y = qsec)) + 
    geom_point(color = "red")
```

Is this code an example of `mapping` or `setting` the 'color' aesthetic?

Question 7. Which `geom` function is designed to plot distributions of categorical variables?

(A) `geom_histogram()`
(B) `geom_freqpoly()`
(C) `geom_density()`
(D) `geom_bar()`
Question 8. Consider this table and graph:

Which column(s) from the input table would you need to create the graph? (circle all that apply)
(A) flight
(B) carrier
(C) sched_dep_time
(D) dep_delay
(E) sched_arr_time
(F) arr_delay

Question 9. Consider the same table and graph from question 8. Which filter function code could we use to limit the input data for this graph to just United Airlines flights?
(A) filter(carrier=="United Airlines")
(B) filter(carrier="United Airlines")
(C) filter("United Airlines")
(D) filter(carrier="United Airlines")

Question 10. Consider the 'de_results' data frame of differential expression results:

A tibble: 6 x 6
gene_id log2FC pvalue padj minus_log10_pvalue DE_status
1 ENSMUSG00000058006 1.12 1.90e-11 1.63e-10 10.7 Non-DE
2 ENSMUSG00000021326 -1.32 1.34e-8 7.94e-8 7.87 Non-DE
3 ENSMUSG0000011158 -0.199 1.30e-1 1.93e-1 0.885 Non-DE
4 ENSMUSG00000021326 0.246 1.47e-1 2.14e-1 0.833 Non-DE
5 ENSMUSG0000004384 0.0278 8.19e-1 8.66e-1 0.0866 Non-DE
6 ENSMUSG00000113428 0.0823 8.22e-1 8.66e-1 0.0853 Non-DE
Here’s a volcano plot made from the ‘de_results’ data frame:

Fill in the aesthetic mappings you would need to create this volcano plot:

```
aes(_________ = __________,
    _________ = __________,
    __________ = __________)
```

Question 11. Which R function do you use to access the ‘samples’ component of a SummarizedExperiment object?
(A) `assay()`
(B) `colData()`
(C) `rowData()`
(D) `metadata()`

Question 12. The following code generates an error:

```
filter(penguins, species = "Gentoo")
```

Error in `filter()`:
! We detected a named input.
 i This usually means that you've used `=` instead of `==`.
 i Did you mean `species == "Gentoo"`?

Based on the error message, re-write this code so it runs correctly and returns all rows of the penguins data frame from Gentoo penguins.
Question 13. The following code generates an error:

```
ggplot(covid_testing, aes(x = age)) + Geom_histogram()
```

Error in Geom_histogram(): could not find function "Geom_histogram"

Based on the error message, re-write this code so it runs correctly and generates a histogram showing the age distribution for patients taking COVID-19 tests.

Question 14. Which R package contains functions for reading data from raw text files?
(A) readxl
(B) readr
(C) dplyr
(D) tidyr

Question 15. Draw a line connecting the `ggplot2` function to its role in creating a figure.

<table>
<thead>
<tr>
<th>Function</th>
<th>Role in figure creation</th>
</tr>
</thead>
<tbody>
<tr>
<td>labs()</td>
<td>Create the canvas on which everything else is painted</td>
</tr>
<tr>
<td>ggplot()</td>
<td>Set the main figure title and axis titles</td>
</tr>
<tr>
<td>aes()</td>
<td>Paint data on the figure as a scatterplot</td>
</tr>
<tr>
<td>geom_point()</td>
<td>Map columns from the input data to visual properties of the figure</td>
</tr>
</tbody>
</table>

Question 16. Consider the following function definition:

```r
get_de_genes <- function(de_results,
                          de_method,
                          q_value_cutoff = 0.05,
                          log2_fc_cutoff = 1) {
                          # Body of the function

                          }
```

If we call the function with this code:

```
input_data |> 
            get_de_genes(log2_fc_cutoff = 2,
                          "limma")
```

What value is assigned to the 'de_method' argument?
(A) contents of 'input_data'
(B) 2
(C) 0.05
(D) "limma"
(E) 1
Question 17. Consider the two tibbles:

Tibble A:

```
# A tibble: 24 x 3
  gene_name sample_id  read_counts
  <chr>     <chr>      <int>
1 Lcn2      Saline_9574  63
2 Lcn2      Saline_9575  41
3 Lcn2      IL1B_9577   39976
4 Lcn2      IL1B_9578   44056
5 Ido2      Saline_9574  1734
6 Ido2      Saline_9575  1129
# i 18 more rows
```

Tibble B:

```
# A tibble: 6 x 5
  gene_name Saline_9574 Saline_9575 IL1B_9577 IL1B_9578
  <chr>     <int>      <int>      <int>      <int>
1 Lcn2      63          41          39976      44056
2 Ido2      1734        1129        280        230
3 Fam83a                      6          5         94      210
# i 3 more rows
```

List the number of rows present in each tibble:

Tibble A: _______

Tibble B: _______

Question 18. There is a blank in the following `filter` expression:

```
filter(penguins,
  species == "Gentoo" ___ species == "Chinstrap")
```

Which operator would go in the blank to make this expression return all rows with data from "Gentoo" or "Chinstrap" penguins?

(A) &
(B) |
(C) |
(D) +