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What is Multiple 
Testing?

• Multiple testing is not one thing or one 
problem.

• But in a nutshell, it arises whenever we 
try to draw conclusions that involve 
more than one test.

• Multiple testing causes the most 
difficulties when the balance between 
true positives and false positives gets 
out of whack, like it did in the AIDS 
testing example.

– If the population has a lot of 
negatives and just a few positives, 
then a small percent of the false-
positives can swamp out a large 
percent of the true-positives.



A matter of degree

How to handle multiple testing problems also depends on 
how many tests are being performed.

A typical paper based on PCR tests: Dozens, possibly a 
hundred tests, not thousands. 

RNA-Seq DE analysis: Tens of thousands of tests (one for 
each gene).

We’re going to look at both, but focus on the latter.



Review of AIDS Testing Example

• A small percentage (FP=0.01) of a large population 
(those without AIDS) swamps out a large percentage 
(TP=.0.99) of a small population (those with AIDS).

• 1% of the healthy population falsely testing positive 
exceeds by fourfold the total number of true AIDS 
cases.

– The first 0.01 “FP rate” is about a test on one 
individual.

Prob( test positive | negative ) = 0.01

– The second 0.8 “FP rate” is about a population.

Prob( negative | test positive ) = 0.8

True Positives = 0.25%

False Positives = 1%

• Therefore, the severity of the problem depends on 
something unknown: the true population structure.



Population Structure

• We assumed 1 in 400 going for testing are 
positive and concluded that 80% of those 
testing positive are actually false-positives.

• Suppose on the other hand that 40 of every 
400 going for testing are positive.

• Now there’ll be 40 true-positives and 0.01 x 
360 = 3.6 false-positives.

• Now the probability of being negative if you 
tested positive has decreased from 80% to 
10%.



Populations
- two extremes -

The nature of the 
multiple testing 

problem depends 
on the makeup of 
the population of 

things being 
tested.

• We tend to PCR test 
things we have a strong 
suspicion are DE.

When doing PCR 
tests for DE for a 
study, it’s likely 

that most of the 
null hypotheses 

are false.

• RNA-Seq is a fishing 
expedition, most genes 
are not DE.

When testing 
30,000 genes for 
DE, it’s likely that 
most of the null 
hypotheses are 

true.



The Null 
Hypothesis

in the Multiple-
Testing Context

When we test one gene 
for differential expression 
(DE), the null hypothesis 
is that the gene is not DE.

When we test two genes 
for DE, what should the 
null hypothesis be?



The Null 
Hypothesis 

for Two 
Genes

• Option 1

– Make one null hypothesis:

– H0: Neither gene is DE.

– This is called “The Complete 
Null Hypothesis”.

• Option 2

– Make two hypotheses:

• H01: Gene one is not DE

• H02: Gene two is not DE



The Complete Null

• Testing the complete null solves 
the multiple testing problem.

• But it doesn't tell us very much.  
If we reject H0, then we 
conclude that at least one is DE.

• This information is not very 
useful because we don't want 
just to know if some gene is DE, 
we want to know which genes 
are DE.



Multiple 
Hypotheses
- Two Tests -

• In this case we have two null 
hypotheses:

H01 and H02

• Suppose each test is run with 
a Type I error of 0.05.  

• This leads to two p-values.

• Suppose we reject their 
respective null hypotheses if 
their p-value 𝑝 ≤ 0.05.

• How often will we reject at 
least one true null 
hypothesis?



Type I 
Error for 
Two Tests

• If both null hypotheses are true, then 
the probability of rejecting at least 
one of them is one minus the 
probability accepting both.
(since the opposite of rejecting at least one, is rejecting 
none)

– The probability of not rejecting 
one is 0.95, so the probability of  
not rejecting either is 0.952

• So, the probability of rejecting at 
least one true null hypothesis is

1 − 0.952 = 0.0975

• Our probability of making at least 
one mistake has almost doubled by 
doing two tests.
– Which is not surprising.



Strong Control
• Suppose we are not willing to make any false 

rejections.

– This is called “Strong Control” of the multiple 
testing problem.

• We could achieve this by lowering the per-test p-value 
cutoff to

0.05

2
= 0.025

• Now the probability of making any false-positives at all 
is

1 − 0.9752 = 0.049375

which just sneaks in under 0.05.

o This is known as a “Bonferroni correction”.

➢ Let’s see what happens when there are 
three tests.



Strong Control with 
Three Genes

• If we had three genes, we'd 
have to make the cutoff 
even lower.

• We could achieve this by lowering 
the p-value cutoff to

0.05

3
= 0.01ത6

• Now the probability of making any 
false-positives at all is

1 − 0.98ത33 = 0.04917

which again sneaks in under 0.05.



The Bonferroni 
Correction

• This classical method says the following.

• Suppose we perform N tests 
(independent or not), and we want to 
control the complete null hypothesis at 
the level C  (e.g., C=0.05).
– Then, the probability that any true 

null hypotheses have p-value < C/N  
is no more than 𝐶.

– This means the probability of any 
false-positives is < C.



Bonferroni

Bonferroni gets very 
conservative very fast.

If you have 10 genes, the p-
value cutoff for strong 

control at the 0.05 level 
must be 0.05/10 = 0.005.

So, to have a 0.05 
probability of no false-

positives, we only reject a 
null hypotheses when its p-
values are less than 0.005. 

When you have 10,000 
genes, the cutoff must be 
lowered to 0.000005.

• At this point, it’s unlikely that any 
genes have p-value small enough 
to be called significant.



Strong Control is too Strong

Once we have 10,000 genes we need an entirely new approach, we 
need to rethink the problem.

A new approach was introduced in 1995 with the introduction of the 
False Discovery Rate (FDR) by two statisticians Benjamini and Hochberg.

Using Bonferroni we've solved the multiple testing problem, but we 
did it by throwing the baby out with the bathwater.



FWER Recap

• Bonferroni controls the probability of making any errors at all.

• That is what's known as controlling “The Family-Wise Error 
Rate” (FWER).

• But the FWER approach is too strong for RNA-Seq DE analysis.

• We don't need to be 95% sure there are no false-positives on 
our list.

• Instead, we just need to keep the percentage of false-positives 
under control. 



RNA-Seq

• Suppose there are 10 such genes.

• So, we’re looking for 10 DE genes out of 30,000.

• Classic needle-in-haystack problem.

Suppose you are looking for the DE genes between two experimental conditions.

1.To provide a set of 2 genes that are 95% sure to all be truly DE (so we missed eight).

2.To provide a set of 20 genes that are expected to contain the 10 DE genes plus 10 non-DE 
genes.

Suppose the bioinformatician can offer the biologist two options.

• The first is FWER controlled (at the 0.05 level).

• The second is FDR controlled (at the 0.5 level).

The biologist would probably want both. 

• Next, we’ll discuss the most popular way to do FDR control.

We’ve seen how to do FWER control (use Bonferroni).



The False Discovery Proportion

When declaring 100 
genes DE, we can tolerate 
a list with 90 true 
positives and 10 false 
positives.

    90% true

What we don't want is a 
list with 90 false positives 
and only 10 true 
positives.

    10% true

In the first case 
the False 
Discovery 
Proportion is 0.1, 
in the second 
case it’s 0.9.

Controlling this 
False Discovery 
Proportion is 
where q-values 
come in.



q-values
• q-values are between 0 and 1 just like p-values.

• And just as we get a p-value for each gene, there are 
methods that associate q-values to each gene.

• So after the statistical analysis, spreadhseets look like 
this:



q-values in practice
• If you use a cutoff for the q-value of C, then the 

expected proportion of false-positives in the set of 
all significant genes is < C.

• For example, for the set {Gene1, Gene2} we expect 
2 x 0.04 = 0.08 false positives.

– So considerably less than one.  In other words, we 
expect both genes to be true positives.



The False Discovery Rate

• In general, the False Discovery Rate (FDR) is 
the expected proportion of false-positives in 
the set of rejected hypotheses.

• We work with the FDR and not the False 
Discovery Proportion, because the latter is 
an unknown quantity.

– We’re just estimating that unknown quantity 
with the expected value which we can calcluate.



The FDR
• The set {Gene1, Gene2, Gene3} is based on q-

value cutoff of 0.1, so the set has an FDR of 0.1.

• Therefore, we expect 3 x 0.1 = 0.3 false positives 
in the set.

– Still less than one.



The FDR
• The set {Gene1, Gene2, Gene3, Gene4} is based 

on q-value cutoff of 0.15, so the set has an FDR of 
0.15.

• Therefore, we expect 4 x 0.15 = 0.6 false positives 
in the set.



The FDR
• The set {Gene1, Gene2, Gene3, Gene4, Gene5} is 

based on q-value cutoff of 0.21, so the set has an 
FDR of 0.21.

• Therefore, we expect 5 x 0.21 = 1.05 false 
positives in the set.



q-values vs. p-values

• Suppose the biologists has 30,000 genes and 
wants to find which of them are DE.

• Suppose the underlying truth is that 4 of them 
are actually DE.

– Initially, these four are like four needles in a haystack, 
lost among the 29,996 non-DE genes.

• Suppose the bioinformatician can deliver the 
biologist a set of 5 genes that contain the 4 DE 
genes.

• The biologist can then PCR validate these five to 
find out which are the 4 truly DE genes.



q-values vs. p-values

Therefore, by using a q-value cutoff of 0.21 
we achieved a strong and useful result.

• In contrast, we would never use 0.21 as a p-value cutoff.

This illustrates how different p-values and q-values are.

• p-values are probabilities, q-values are expected proportions.

• They mean very different things and you interpret them very 
differently.

When working with q-values it is a mistake 
to limit ourselves to just 0.01 or 0.05.  



The FDR
• The set {Gene1, Gene2, Gene3, Gene4, Gene5, Gene6, 

Gene7} is based on q-value cutoff of 0.45, so the set 
has an FDR of 0.45.

• Therefore, we expect 7 x 0.45 = 3.15 false positives in 
the set.  So approximately 4 true positives and 3 false 
positives.



In Practice

• We typically would not be using q-values to 
work with 10 genes like in the previous 
examples.  

• q-values are used for RNA-Seq analyses with 
30,000 genes.

• We use them also in many other data types 
and analyses.
– Whenever there is a massive number of tests 

and a small proportion of the null hypotheses 
being null.



Allowing  
Mistakes

- Validation -

• Another way to think of the FDR is as part of a 
validation approach; similar to the AIDS 
problem.

• Suppose for example that you are testing 
30,000 genes for differential expression by RNA-
Seq.

• If you can measure as many replicates as you 
want, then you can determine which are 
differentially expressed with high confidence.

• But in RNA-Seq nobody can afford to do “as 
many replicates as they want”.

• Suppose you cannot afford to do more than 3 
replicates per group.  



Allowing  
Mistakes

The 
“validation” 

approach

• If we do a first pass with three replicates and 
find five genes, four of which are expected to 
be true positives (so FDR = 0.2).

– Then we can perform more replicates by 
PCR just of those five genes to identify the 
false positive.

– We’re assuming samples are cheap, PCR is 
cheap, but performing a full RNA-Seq 
assay of a sample is expensive.

• In the end the one false positive caused no 
harm.

• The trick is in finding the most powerful 
method to get from 30,000 down to a 
validation set with a small proportion of false 
positives.



False Discovery Rate Subtlety

• Individual tests have false-positive rates (p-
values).

• But individual tests do not have false-
discovery rates. 

– A False Discovery Rates is about a set of tests, not 
a single test.

• We use q-values to determine sets of genes.

– It’s those sets to which we associate an FDR.



p-values are local
q-values are global

• Suppose we collect samples to perform an RNA-
Seq Differential Expression (DE) analysis. 

• Let G be a gene in the genome.  

• Every gene will have a p-value.

• If the data change for other genes besides G, in 
theory the p-value for G will remain the same.

– The T-Test and its p-value only depends on 
the data for G.

• In contrast, it could change G’s q-value.

– That’s because the q-value of any given 
gene depends globally on all other genes.

• Just like in the AIDS example.  The 
confidence in a test for a single person 
depends on the population.



Mathematical Definition of the FDR

FDR = E[V/R|R>0] * Pr(R>0)

The FDR is associated to a set of hypotheses not 
a single hypothesis.



Algorithms and 
Assumptions

• Most of the algorithms for generating 
q-values start by generating the column 
of p-values.  They then adjust (correct) 
those p-values to become q-values.

• The most popular is called Benjamini-
Hochberg (B-H).

– Be careful not to confuse 
“Benjamini-Hochberg” with 
“Bonferroni”.



Benjamini Hochberg

• This is the original method devised to control the FDR.

• It was first proposed in 1995.

• It works as follows:

• Suppose there are m (independent) null hypotheses.

• Suppose we want an FDR no greater than α.

1. Compute p-values for each null hypothesis.

2. Rank the p-values smallest to largest.

3. Find the largest number k such that the k-th p-value on the 
ranked list is less than kα/m.

4. Reject the top k hypotheses on the ranked list.

• Then the FDR of these k hypothesis is at most α.

• This is very far from obvious, and we won’t try to prove it.



Limitations of 
Benjamini-Hochberg

• The BH method has its drawbacks.

• It assumes independent hypotheses.

• Bonferroni, on the other hand, does 
not.

• It is only as good as the individual p-values.

• If the p-values are not reliable

– For example, a T-test on data with only 
two replicates per group will have a lot 
of false negatives and BH will not fix 
that.

The BH method will inherit these issues 
and will also be underpowered.



q-values
• The q-value allows us to associate a level of confidence 

to individual hypotheses, as opposed to sets of 
hypotheses.

• The q-value for an observed value of the statistic T is:

– min0<C<t ( Prob( H0 True | T > C))

– Don’t worry about wrapping your head around this 
definition.

– The point is, the set of hypotheses with q-value less 
than α has FDR < α



Application 
of RNA-Seq

• The goal is to find the DE genes 
between two experimental conditions.

• We have seen how to get from raw 
data to a spreadsheet of expression 
values.

• There are several ways to normalize 
and generate q-values for each gene.

• This is a job for R and we will come 
back to it when we do R in a couple 
weeks.



Standard DE 
methods

• Most people use one of DESeq, edgeR 
or limma-Voom.

• These methods all produce p-values 
which are then transformed into q-
values using Benjamini-Hochberg.

• Therefore, all methods are assuming 
independence between genes at some 
point or another.

– This is done commonly, in spite of 
it being a strong assumption.  
People are always working on 
improvements.
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