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Dimensionality Reduction

• We live in a (spatially) 3-dimensional 
world.

• We have little to no visual intuition 
for the 4th dimension or higher.

• Even though we have no trouble 
describing such spaces 
mathematically.

• If ℝ is the real numbers, then the 3rd 
dimension is simply the set:

𝑥, 𝑦, 𝑧  | 𝑥, 𝑦, 𝑧 𝜖 ℝ

• In other words, the set of all triples of 
real numbers.

• And therefore the 4th dimension is:
𝑥, 𝑦, 𝑧, 𝑤  | 𝑥, 𝑦, 𝑧, 𝑤 𝜖 ℝ

• The set of all 4-tuples of real 
numbers.



The Canonical Subspaces
• We call 3-dimensional space ℝ3

ℝ3 = 𝑥, 𝑦, 𝑧  | 𝑥, 𝑦, 𝑧 𝜖 ℝ

• A subspace of ℝ3 is a line or a plane that 
includes the origin.

• There are three natural 2-dimensional 
subspaces in ℝ3.

– The X-Y plane

– The X-Z plane

– The Y-Z plane

The X-Y plane is 𝑥, 𝑦, 0  | 𝑥, 𝑦 𝜖 ℝ

The Y-Z plane is 0, 𝑦, 𝑧  | 𝑦, 𝑧 𝜖 ℝ

The X-Z plane is 𝑥, 0, 𝑧  | 𝑥, 𝑧 𝜖 ℝ



Other Subspaces
• And there are infinitely many other possible 2-dimensional subspaces.

• For example, 𝑥, 𝑦, 𝑧  | 𝑥, 𝑦, 𝑧 𝜖 ℝ 𝑎𝑛𝑑 𝑥 + 𝑦 + 𝑧 = 0



Subspaces of the 4th Dimension

• We can’t draw pictures, but we can still 
describe them mathematically.

• 4-dimensional space ℝ4 is just the set of all quadruples of real numbers
ℝ4 = 𝑥, 𝑦, 𝑧, 𝑤  | 𝑥, 𝑦, 𝑧, 𝑤 𝜖 ℝ

• There are six natural 2-dimensional spaces in ℝ4.

– The X-Y plane is 𝑥, 𝑦, 0,0  | 𝑥, 𝑦 𝜖 ℝ

– The X-Z plane is 𝑥, 0, 𝑧, 0  | 𝑥, 𝑧 𝜖 ℝ

– The X-W plane is 𝑥, 0,0, 𝑤  | 𝑥, 𝑤 𝜖 ℝ

– The Y-Z plane is 0, 𝑦, 𝑧, 0  | 𝑦, 𝑧 𝜖 ℝ

– The Y-W plane is 0, 𝑦, 0, 𝑤  | 𝑦, 𝑤 𝜖 ℝ

– The Z-W plane is 0,0, 𝑧, 𝑤  | 𝑧, 𝑤 𝜖 ℝ



Intuition in the 3rd Dimension

• We will soon be working in 30,000th 
dimensional space.

• But intuition already flies out the 
window in the 4th dimension.

• For example, in the 3rd dimension, 
how do two different planes 
intersect?

• Intuition tells us they must intersect 
in a straight line, or not at all.



Intuition 
in the 4th 

Dimension

• Same question.

– In the 4th dimension, how do two 
planes intersect?

• It could still be a straight line.

– The X-Y and Y-Z subspaces 
intersect in the Y-axis.

• But it’s also possible for two 
planes to intersect in one single 
point.



Two Planes That Intersect 
in One Point

• The X-Y and Z-W subspaces intersect only 
at the origin (0,0,0,0).

– The X-Y plane is 
𝑥, 𝑦, 0,0  | 𝑥, 𝑦 𝜖 ℝ

– The Z-W plane is 
0,0, 𝑧, 𝑤  | 𝑧, 𝑤 𝜖 ℝ

• The only point in both sets is (0,0,0,0).

• This is obvious and uncontroversial when 
we write down the math like this.

• Yet it seems crazy and impossible at the 
level of intuition.



High-Dimensional Space
- and gene expression data -

• A triple of numbers 𝑥, 𝑦, 𝑧  is a single point in 
3-dimensional space.

– We also call a triple of numbers a vector of 
length 3.

• And a quadruple of numbers 𝑥, 𝑦, 𝑧, 𝑤  is a 
single point in 4-dimensional space.

– A vector of length 4.

• Well, what is the collection of gene 
quantifications associated to an RNA-Seq 
sample?
– It’s a vector of length (approximately) 30,000

• Therefore, one RNA-Seq sample is a single 
point in 30,000-dimensional space.



Notation

• We quickly run out of letters so in higher-
dimensional space we use subscripts

𝑥1, 𝑥2, … , 𝑥30,000

• Any letter can be used.
𝑦1, 𝑦2, … , 𝑦30,000

• Or if we have 30,000 genes and m 
samples, we might use double subscripts, 
one for sample and another for gene.

Sample 1: 𝑥1,1, 𝑥1,2, … , 𝑥1,30,000

Sample 2: 𝑥2,1, 𝑥2,2, … , 𝑥2,30,000

Sample 3: 𝑥3,1, 𝑥3,2, … , 𝑥3,30,000

• In general, the j-th gene of the i-th sample 
is 𝑥𝑖,𝑗



Distance

• If two samples have similar gene 
expression, then their corresponding 
points in 30,000-dimensional space 
should be physically near each other.

• These distances are of interest 
because they could reveal hidden 
relationships between the samples.

• This is akin to hierarchical clustering 
but represents the information 
differently.

– In space rather than by a tree.



• We can calculate distances in 
30,000-dimensional space using 
the usual formula.

• If റ𝑥 = (𝑥1, … , 𝑥30,000) and

         റ𝑦 = (𝑦1, … , 𝑦30,000) 

• Then the (Euclidean) distance 
between റ𝑥 and റ𝑦 is

𝑑 റ𝑥, റ𝑦 = ෍(𝑥𝑖−𝑦𝑖)2 

Distances
Formula



Numbers versus 
Pictures

• We can easily calculate the 
distances between all points 
(samples) and put them in a 
matrix.

• But staring at a matrix of numbers 
is only so enlightening.

• We’d prefer to visualize the points 
like we would if they were in 2-
dimensional or 3-dimensional 
space.



Projections

• We achieve this by 
“projecting” the data from 
the 30,000-dimension to the 
2nd dimension.

• However, to gain some 
intuition of what a projection 
is, let’s start by projecting 
points from 2-dimensional 
space onto one-dimensional 
subspaces.



Not All Projections Are Equal

• Notice that some projections 
crunch all the data together 
after projections

– Subspaces with slope around -1

• And others keep them relatively 
spread out.

– Subspaces with slope around +1

• The more spread out the data 
are in the subspace, the more 
information about their 
relationships is preserved.



Baby 
Example

• Imagine there were 
only two genes.

• This is gene 
expression data for 
six subjects.

• Visually, Gene 2 is 
DE, Gene 1 is not.



Projection 
onto X-Axis

• This is the same as 
just forgetting Gene 2.

• Imagine you can’t see 
in two dimensions; all 
you can see is the X-
axis.

• Since Gene 1 is not 
DE, we lose the 
separation.



Projection 
onto Y-axis

• This is like forgetting 
Gene 1.

• Imagine you can’t see in 
two dimensions; all you 
can see is the Y-axis.

• Since Gene 2 is DE, this 
preserves the separation.



Other 
Subspaces

• Now suppose the data 
looks like this.

• Now it appears both 
genes are DE.

• But we’re going to 
continue to imagine 
we can’t see in two 
dimensions, only one.



Diagonal 
Subspace

• This subspace can be 
thought of as an equal 
combination of both 
genes.

• Strictly speaking, every 
subspace is a weighted 
sum of the two axes.

• Here both weights are 
equal to one, thus the 
perfect 45° diagonal.



The other 
Diagonal 
Subspace

• The subspace at -45° 
is the weighted sum 
where the weights are 
+1 and -1.



The 1D view
• We can draw the subspaces as 1D spaces on their own.

• Here we’ve drawn two, of the infinitely many possible.



The view from one dimension

• Continuing to assume we’re one-dimensional creatures who can only visualize 
in one dimension, these “slices” are our only way to view of the 2D data.

• And if all we looked at was subspace 1, then we would not see the separation.

• The data has much greater variance in Subspace 2.

• This is why the dimensionality reduction algorithms look for the subspace with 
the greatest variance.



Latent Variables

• Instead of working with two variables, Gene 1 and Gene 2, we can just work 
with the values projected onto Subspace 1

– This has retained much of the information from the two genes, but we only have to work with 
one variable instead of one.

• Subspaces are called “latent variables”.

– And there are infinitely many of them, one for each possible weighted sum.

• By choosing latent variables judiciously, we can work with fewer variables.

• And ultimately, to work with RNA-Seq data, we need to get that down from 
30,000 to two.



Interpreting Latent Variables

• Each latent variable is a weighted sum of the expression values of all 
genes.

𝐿 = ෍

𝑖

𝑤𝑖𝐺𝑖

– 𝐿 is the value of the latent variable.

– 𝐺𝑖  is the expression value of gene 𝑖

– 𝑤𝑖 is the weight for gene 𝑖

• If all weights are zero except for the genes in some particular pathway, 
then the latent variable is all about that pathway.  No mystery.

• And sometimes they’re more mysterious, when they are not focused on 
one pathway or functional category.



Variance

• As the previous slides make clear, we 
want to project on the subspace that 
preserves the maximum amount of 
variance in the data.

• There are elegant formulas from 
linear algebra (matrix algebra) that 
give this with surprisingly little work. 

Just showing what they look like here, you are not 
responsible for this formula.



Two Dimensions

• We’ve been illustrating concepts by 
projecting onto one dimensional 
subspaces.

• But we can visualize two and also three 
dimensions.

• We typically project onto two dimensional 
subspaces because they are the easiest to 
render.



PCA1 and PCA2

• PC1 is the 1-dimensional 
subspace which retains 
the greatest amount of 
variance when the data 
are projected onto it.

• PC2 is the 1-dimensional 
subspace that is 
perpendicular to PC1 and 
has the greatest amount 
of variance when the data 
are projected onto it.



Principal 
Components 

Analysis

• In PCA you start by 
projecting the original 
high-dimensional data 
onto the 2-dimensional 
subspace defined by the 
two one-dimensional 
subspaces PC1 and PC2.

• You then try to interpret 
what you see.



PCA3

• Continuing, we can define PC3 as 
the (one-dimensional) subspace 
that’s perpendicular to the plane 
defined by PC1 and PC2 and retains 
the greatest amount of variation of 
the data among all such 
perpendicular subspaces.

• We can then graph PC1 or PC2 
against PC3.
– And nothing stops us from continuing 

to PC4, PC5, etc.
– As long as we just plot one of these 

against one other, we get a 2-
dimensional plot that we can visualize.

• But there are diminished returns 
going to higher and higher 
components.



Percent Variance 
Explained

• The data projected onto PC1 
will (almost certainly) be less 
variable than the original data 
is the full 30K dimensional 
space.

– PC1 is the subspace that 
preserves the most 
variance, but it can’t 
usually preserve it all.

• Happily, Principal 
Components Analysis also 
reports how much variance is 
explained by each Principal 
Component.

In this example, it would be pointless to look beyond PC3 and 
probably even beyond PC2 and arguably just PC1 might be 
enough with 92% of variance explained just by that one PC.



Loadings
• Each Principal Component is 

a weighted sum of the 
original dimensions.

• The weights 𝑤𝑖  tell us how 
much that dimension (gene) 
contributes to the Principal 
Component.

• For example, if all 𝑤𝑖  were 0 
except 𝑤85 then we’d know 
all variation in that 
component is explained by 
variation of the 85th gene.

• Or if all 𝑤𝑖  were 0 except the 
genes in one pathway, then 
we’d know all variation 
between samples is 
explained by variation in that 
pathway.

𝑃𝐶1 = ෍ 𝑤𝑖𝑔𝑖



Loadings

• Loadings can be represented in several ways.

• The most basic is as bar graphs where the weights 
have been normalized to be between -1 and +1.

– Genes with loadings that are basically zero are omitted.



PCA 
Interpretation 

Summary

• To interpret PCA consider:

– The percent variance explained by 
the various Principal Components.

• This tells us how relevant the 
PC’s are.

– The loadings.

• This tells us which genes are 
relevant to which PC’s.

• Visually, look for clustering and groupings 
of points (samples).

– We often color points by 
experimental conditions and other 
known factors to help with 
interpretation.



PCA 
Example • Here WT and Mutant mice were 

compared.
– And they were assayed in two batches.

• Think of “batch” and “genotype” as two 
(categorical) variables, each of which affect 
the variance of the assays.



PCA 
Example

• PCA shows batch had a lot of impact on 
expression.
– PC2 is largely driven by batch while PC1 is driven by 

genotype.

• This indicates we should to account for batch in 
the analysis.
– We can lower the technical variance.

• Since PC1 is driven by genotype, the loadings for 
PC1 indicate which genes are DE.
– Focusing on PC1 effectively controls for batch in this data.



Controlling 
for Batch 

with Linear 
Model

• Another way to control for batch is with a linear 
(regression) model that includes “batch” as a 
nuisance variable.

• Some off-the-shelf RNA-Seq DE apps are based 
on linear models and allow you to control for 
nuisance variables.
– DESeq2 and Limma-voom for example.



Nonlinear 
dimensionality 

reduction

• PCA is known as a linear 
method.

– The projection onto 
the subspace is 
performed by a linear 
transformation (in 
other words, 
multiplication by a 
matrix).

• But biological data are not 
always linearly separable.

• Any subspace we project 
onto linearly is going to 
mix the two conditions up.



The Kernel Trick
• One way around this problem is to first embed 

into an even higher dimensional space, where 
the data then become linearly separable.



Single Cell 
Transcriptomics

• One of the most important 
domains for dimensionality 
reduction is single-cell 
transcriptomics.

– Hundreds to thousands 
of cells are assayed by 
RNA-Seq.

– Depth of sequencing is 
100 times less than 
with bulk RNA-Seq.

– But you get many cells.



Single Cell 
Transcriptomics

• Dimensionality reduction allows us 
to identify types of cells based 
entirely on their transcriptome.
– Even though they may be 

indistinguishable morphologically or 
by cell surface markers.

• It is generally accepted that non-
linear dimensionality reduction 
performs better on single cell 
data.



t-SNE and 
UMAP

• In Single Cell, primarily two methods are 
used.

– t-SNE stands for “t-distributed 
stochastic neighbor embedding”.

– UMAP stands for “Uniform Manifold 
Approximation and Projection”

• These are complex algorithms that we 
don’t have time to go into in any detail.

• In a nutshell they construct a probability 
distribution over the points in the high 
dimensional space and then try to 
approximate that in a lower dimensional 
space as closely as possible.



Single Cell
t-SNE Example

• Single-Cell RNA-Seq of 
12,198 Arabidopsis Root 
Cells Captures Diverse Cell 
Types.

• t-Distributed Stochastic 
Neighbor Embedding (t-SNE) 
dimensional reduction of 
12,198 single Arabidopsis 
root cells. Cells were 
clustered into 17 
populations
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