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Hypothesis Testing

• Consider the most basic statistical problem.

• Two experimental conditions and one quantity 
of interest.

• For example:
– WT versus Mutant (the two conditions)
– Expression of Gene X (the one quantity of 

interest)

• Question: Is the (unknown) mean of the 
measurement in condition one different from 
the (unknown) mean of the measurement in 
condition two.

• We want a way to answer this with control of 
the false-positive and false-negative rates.



Significance Testing

• People have literally thought up hundreds 
of ways to do this.

• Solutions have all kinds of advantages and 
disadvantages.

• One general approach is to calculate

P(data | H0)

– H0 is the null hypothesis that the 
means are equal.

– Gives a p-value, which we can use to 
decide if believing whether H0 is true 
or not.



Assumptions

• One of the major disadvantages of many 
methods is that they make simplifying 
assumptions about the data.

• For example, the T-test assumes:

– Individual observations are drawn from 
normal distributions.

– If the means are different between the 
two conditions, then the means are the 
only thing that’s different, not the 
variances.

• These are powerfully strong assumptions 
that are rarely true.



Not all assumptions 
are the same.

• Sometimes a wrong assumption will not cause 
problems.

• By “wrong” here we mean anti-conservative.

– In other words, Type I error is higher than we 
think it is (more false positives).

• For example, in a T-test you can safely ignore the 
normality assumption if you have enough replicates.

– 8-10 replicates per condition is usually enough 
to overcome the normality assumption.

– The central limit theorem says so.

• While you cannot safely assume equal variance in 
both groups when doing a T-test.

– No matter how many replicates you have.

Unequal means and variances.



If assumptions drive us wrong, why make them?

Two main considerations:

1. We have no (known) alternatives. 

2. There are alternatives, but they 
cost us so much power that 
they’re not worth it.

This is called being “fast and loose,” an 
unfortunate reality of significance 
testing in biology.

Sometimes you simply must shoot 
from the hip.  But that’s still better 
than shooting blind.



Power

• A test with lower false-negative rate 
is called “more powerful”.

• Strictly speaking the power is one 
minus the false-negative error rate.

– A test with low false-negative 
rate has high power, and 
conversely.



Type I vs Type II Error

• Type I = False Positive Rate
• Type II = False Negative Rate

• You can always get the Type I error rate 
down to zero.
– Simply never reject the null 

hypothesis, and you can never be 
wrong.

– But this strategy has increased the 
Type II error rate to 1.0.

• Similarly, you can always get the Type II error rate down to zero.

– Simply always reject the null hypothesis, and you can never miss anything.

– But this strategy has increased the Type I error rate to 1.0.



Trade Offs

• The previous slide represents two extremes.

• But everywhere in between, Type I error is always in tension with Type II.

• Whenever you lower one, you raise the other.

• Unless you can increase the number of replicates indefinitely.  Then you can 
decrease both at the same time.



Parametric Methods

• A T-test assumes normal distributions.

• This is known as a “parametric” assumption.

– Whenever we assume we know the form 
of a distribution, we’re in “parametric” 
territory.

• It is possible to derive tests that do not make 
such assumptions.

• But without any such assumptions, the data 
need to speak more for itself.

• And that invariably costs us power.



The Null Hypothesis

• There are two ways to formulate the 
null hypothesis for differential effects.

• First way:

– H0 : The means in the two 
conditions are equal.

• Second way:

– H0 : The distributions in the two 
conditions are equal.

• It’s the first formulation that we care 
about.

– Yet non-parametric methods 
usually only test for the later.

– The math makes us do this.



The Mann-Whitney Test

• This test of makes no assumptions about 
distributions.  They can be any shape.

• It ultimately tests for difference in 
distributions not just means.

• Distributions can be different in many 
ways.

• But because of the particulars of the test, 
most of the time it is a difference of 
means driving significant Mann-Whitney 
p-values.

– Most of the time, but not always, we 
will see a counter-example.



The Mann-Whitney Test
- non-parametric two-sample test -

Does not assume anything about the underlying 
distributions.

Based instead on the 
following concept:

If they’re not differential, then if we 
choose an observation from C1 at random 
and another from C2, then it’s a 50/50 
chance C1 is larger.

Replace all data points with their ranks, 
irrespective of which condition they came from.

Ranks are explained on the next slide



Ranks
• A common approach to avoid parametric assumptions is to work with ranks.

• The counts for each observation are replaced by their ranks. 

• Statistical analysis then proceeds on the ranks rather than the original counts.

– Ranks are, after all, numbers, so they can be used to do statistics.

• We’ll see this will allows us to calculate p-values without making any assumptions 
about distributions.



Ranks and Outliers
• Ranks tend to be blind to outliers.

• The bottom data has two outliers, but the ranks are the same.

Gene 2 and 

Gene 5 

same ranks 

as above



Two Groups
• Now suppose we need to test two conditions for difference.

• Rank all values regardless of condition and see how each condition’s 
ranks distribute on the list of all ranks.
– The example will make it clearer.

• This is the basis of the Mann-Whitney test.

The blue 

ones from 

condition1 

bunch up at 

the top of the 

ranked list.



• Sum the ranks from condition C1

   R = 2 + 3 + 1 + 6 + 4 = 16

• It indicates differential effect if R is particularly small or 
particularly large.
– We’re impressed if R=1+2+3+4+5=15 or R=6+7+8+9+10=40 or anything 

“significantly” close to these extremes.

• The null hypothesis is that the ranks from either condition are like rolling a fair 
10-sided die.

C1 : 1.2, 1.5, 0.8, 2.3, 1.7 C2 : 3.2, 2.1, 4.2, 2.9, 3.4

2,    3,    1,    6,    4                    8,    5,   10,   7,   9

Mann-Whitney



The Null 
Hypothesis

• The distribution of R is easy to 
calculate (under the null 
hypothesis).

• For small numbers of replicates in 
each condition (up to about 20) 
computers  can list out all possible 
ways to rank them and calculate R 
by brute force.

• We’ll illustrate the concept on the 
next slide with a 2 replicates versus 
2 replicates comparison.

• When there are more than about 
20 replicates, the p-values can be 
approximated by a normal.



• To illustrate we’ll do the calculation when there are two 
replicates in each group.

– If M = N = 2 then the ranks can happen in only six 
possible ways.

– R is the sum of the ranks in condition C1

• Each of these six possibilities are equally likely.

• But two of them give R=5, so R=5 is twice as likely as the other 
values..

C1 1,2 1,3 1,4 2,3 2,4 3,4

C2 3,4 2,4 2,3 1,4 1,3 1,2

R 3 4 5 5 6 7

R 3 4 5 6 7

P(R) 1/6 1/6 1/3 1/6 1/6

Probability R=5 is 

1/6+1/6 since it can 

happen in two ways.



• Then use the probabilities of R to calculate p-values (tail 
probabilities).

• Since R is only interesting if it is very small or very large, 
the proper p-value is two-sided.

• The p-value for R=3 or R=7 is 1/6 + 1/6  = 1/3

• The p-value for R=4 or R=6 is 1/6+1/6+1/6+1/6 = 5/6

• And the p-value for R=5 is 1.

• None of these are significant.

R 3 4 5 6 7

P(R) 1/6 1/6 1/3 1/6 1/6



Power of Mann-Whitney

• A 2-vs-2 comparison can never be significant by Mann-
Whitney because there simply is not enough information.

– The minimum viable design would be 3-vs-3.

• Compare two examples:

1. If the two values in one condition are 2 and 3 and the 
two values in the other condition are 12,000 and 
12,001, it’s still not significant by Mann-Whitney.

2. Mann-Whitney can’t tell the difference between case 
1 above and 2.9 and 3 in one condition, versus 3.1 
and 3.2 in the other, because they translate into 
exactly the same ranks.

1. And nobody would call this data differential with 
just two replicates.

• In contrast, a parametric T-test would call the first one 
significant.

– Because it would be unlikely to obseve four such 
disparate observations from the same normal 
distribution.



Mann-Whitney vs. T-Test 3-vs-3 Example

• C1: 1.1, 1.2, 1.3

• C2: 5.1, 5.2, 5.3
– Mann-Whitney p-value = 0.05

– T-Test p-value < 0.0001

– The T-Test is far more powerful, if the assumptions hold

• C1: 1.1, 2.1, 3.1

• C2: 3.2, 4.1, 5.1

– Mann-Whitney p-value = 0.05

– T-Test p-value = 0.0631

– Mann-Whitney is more powerful in this case.

• Conclusion: Life is complicated.



Interpretation

In the Mann-Whitney test, 
the null hypothesis is that the 
two distributions are equal.

In a T-test the null hypothesis is 
that the means of the 
distributions are equal.

Testing specifically about means is something we lose 
when we do non-parametric testing.

There are more ways for two 
distributions to be different 
besides their means.

Variance, skewness, kurtosis, 
5th moment, 6th moment, etc, 
there are infinitely many 
moments.



Example of Significant Mann-Whitney Test with 
Equal Means

• C1: 1,1,1,1,1,1,1,1,1,2,2,2,5,5,5,5,5,5,6,6,6

– median=2, mean = 3

• C2: 0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,3,3,34

– median=2, mean = 3

• The two-sided Mann-Whitney p-value for these data is 0.03788.



Even this online 
Mann-Whitney 
server gets it 
wrong.

Widespread 
Misconception



Interpretation

Don’t interpret a 
significant Mann-Whitney 
p-value as a difference of 
means without looking at 

the data.

Inspect the graph to make 
sure what’s different 

about them is what you 
expect.

If it is just a difference in 
variance or skewness, 
that’s not necessarily 

uninteresting.

But it needs to be 
interpreted as such.



Permutations
• A permutation is where we randomly swap values between 

conditions.

• Suppose the original (unpermuted) data looks like this.

• Swap pairs like this a bunch of times to thoroughly randomize 
them.  Such a randomization then constitutes one permutation.



Permutations
• A permutation is where we randomly swap values between 

conditions.

• Suppose the original (unpermuted) data looks like this.

• Swap pairs like this a bunch of times to thoroughly randomize 
them.  Such a randomization then constitutes one permutation.



Number of Permutations
• Suppose C1 has N replicates and C2 has M replicates.

– There are N+M observations in total.
– A permutation consists of choosing  N of them and putting them in group 

one, and putting the remaining M in group two.
– Thus, each way we can choose N things from N+M things gives a distinct 

permutation.  
– The number of ways to choose N things from N+M things is given by the 

formula:

𝑁 + 𝑀

𝑁
=

𝑁 + 𝑀 !

𝑀! 𝑁!

• N=2, M=2:    6 permutations
• N=3, M=3:    20 permutations
• N=4, M=4:    70 permutations
• N=5, M=5:    252 permutations
• …
• N=10, M=10: 184,756 permutations

Note: The unpermuted data 

counts as one permutation, you 

could by chance shuffle them 

back into place.



Permutation 
Tests

• A “permutation test” is a general approach to significance 
testing.

• It can be used almost anywhere, and it allows you to avoid all 
the difficult issues of determining the distribution of a 
random variable.

• It is like duct tape, a multipurpose down and dirty tool in 
every bioinformatician’s toolbox.



Permutation Tests
When/Where/Why

If permutation tests have so many advantages, why not 
always do things that way?

– Because sometimes it’s just better to hang a 
picture on the wall with a nail and a hammer.

1) Power and Efficiency Issues

• If you have a closed form parametric solution to a 
problem, it’s almost always better in terms of power 
and efficiency.

– For example, the parametric T-test is more 
powerful than any non-parametric approach, 
when its assumptions are not excessively violated.

2) Null Hypothesis Issues

• Permutation tests like most non-parametric tests rely 
on the stronger null hypothesis of equal distributions.

3) Implementation Issues

• Figuring out what to permute is not always 
straightforward and can involve simplifying 
assumptions.



Permutation 
Tests

• A permutation test allows us to design a non-
parametric test using any statistic.

• We’ll use the T-Statistic.

– Just because we use the T-Statistic does 
not mean we’re doing a parametric T-test.

• As with the Mann-Whitney and most non-
parametric tests, we again assume the 
stronger null distribution of equal 
distributions.



Implications
• As with Mann-Whitney, the null is “equal distributions” not 

“equal means”.
– Therefore, the null could be rejected when the means are equal.
– There’d have to be something else different about the distributions, 

such as their spread (variance).

• But it’s much less likely to happen with a permutation test 
than a Mann-Whitney, because of how the permutation test 
utilizes the T-statistic.
– The T-statistic is severely underpowered for detecting anything but a 

difference in means.

• So, a rejection tends to be about means, even if it could in 
theory be about variance in edge cases.
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Permutations when null is false
• Permutation tests rely on the following principle:

– If the groups have the different distribution, then a permutation 
should tend to equalize them.

Before permuting both groups 

are different (the null is false)
After permuting both groups 

look the same (like this)

Randomly swap 

values between 

the two groups



Permutation when null true
• If they were not different before permuting, then they will 

tend to not be different after permuting.

Before permuting both groups 

are the same (the null is true)
After permuting both groups still 

look the same

Randomly swap 

values between 

the two groups



Permutations

The T-statistic for data drawn from the distributions on the left (the 

unpermuted data) will be much more extreme (greater mean) than the T-

statistic for data drawn from the distributions on the right (one 

permutation of the data)

This is because the means are different on the left and the close to the 

same on the right.



Permutations

If C1 and C2 have the same distribution, then the T-statistic 

would look the same on unpermuted data is it does on 

permuted.



Permutation P-values

Original data Permute

Compute 

T-stat 

from 

permuted 

data

Accumulate 

these in 

distribution 

over all 

permutations

Compute T-

stat from 

unpermuted 

data

On the next slide 

we will compare the 

unpermuted T-stat 

to the distribution of 

permuted T-stats

STEP 1

Repeat 

STEP 1 

repeatedly

STEP 2

STEP 3



The Permutation Distribution
• The permutation distribution is obtained by plotting the T-Statistic 

over all possible permutations.  It will look something like this:

• If the Null Hypothesis is false, then the T-Statistic on the 
unpermuted data should tend to be extreme with respect to this 
distribution. 



– The area under the permutation distribution to the right of the 
observed T-Stat (calculated from the unpermuted data) is called 
the permutation p-value (shaded area).

– Rejecting the null hypothesis if the permutation p-value is less 
than α controls the Type I error at level α. 

The Permutation p-value



Practical 
Calculation of 

the 
Permutation 

p-value

• Let T0 be the T-Statistic on the 
unpermuted data.

• Count m = number of permutations 
for which the permuted T-Statistic 
is greater than T0.

• Let k = total number of 
permutations.

• The permutation p-value = m/k.



Mann-Whitney  vs. Permutation T-Test

• Let’s revisit the problematic example where means 
were equal but Mann-Whitney p-value is significant.  
Let’s see what happens with the permutation test on 
the same data.

• C1: 1,1,1,1,1,1,1,1,1,2,2,2,5,5,5,5,5,5,6,6,6

– median=2, mean = 3

• C2: 0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,3,3,34

– median=2, mean = 3

• The Mann-Whitney p-value for these data is 0.0374.

• The permutation p-value ≈ 0.5011

• Conclusion: In contrast to Mann-Whitney, the T-statistic 
permutation p-value is less sensitive to differences 
other than the mean.



Advantages 
of the 

Permutation 
Approach

• Permutation methods are employed 
widely.

– Not just in differential expression.

• Whenever you need to calculate p-values, 
you can often solve the problem with 
permutations.

– Sometimes there’s no other obvious 
way to do it.

• The great advantage of the permutation 
approach is there’s no need to calculate 
any distributions of any type.

– One simply permutes, and counts.

• The trick is to find a good statistic make 
sense of the appropriate permutations.

– It’s not always as straightforward as it 
was for the DE problem.



Example
Peak Finding

• Suppose you want to test for significance of a 
ChIP-seq peak height. 

• The statistic is “peak height”.

• We want to know if reads are accumulating in 
one spot just by chance.

• What do you permute?



Example
Peak Finding

• Permute the alignment location of reads.
• Move them to a random location.
• Calculate the maximum peak height in the 

permuted data.
• Repeat many times to get permutation 

distribution



Example
Circadian Genes

• We want to test genes for 
circadian behavior across 
time.

• What should we permute?

• What’s a good statistic?



Example
Circadian Genes

• What should we permute?

– Time points.

• What’s a good statistic?

– How well  a cosine 
curve explains the 
variance.



Example
Dose/Response 

Curve

• Give increasing amounts 
of a drug and test for 
increasing effects.

• What should we 
permute?

• What’s a good statistic?



Example
Dose/Response 

Curve

• Give increasing 
amounts of a drug and 
test for increasing 
effects.

• What should we 
permute?

– Dosage

• What’s a good statistic?

– Slope



Example
Correlation

• Figure shows correlated 
variables.

• For example, is gait 
associated with lifespan?

– Data: Gait and lifespan 
on 100,000 individuals.

– The U.K. Biobank has 
data like this.

• What’s a good statistic?

• What should be permuted?



Example
Correlation

• Figure shows correlated 
variables.

• For example, is gait associated 
with lifespan?
– Data: Gait and lifespan on 

100,000 individuals.

– The U.K. Biobank has 
data like this.

• What’s a good statistic?
– Correlation

• What should be permuted?
– The x-axis values of each 

point.
– Shuffle around the first 

column of data while 
leaving the second 
column fixed.



Example
Correlation

• Figure shows less 
obvious correlation.

• It’s also possible to have 
many points but for the 
correlation to be very 
weak.

• Both cases call for 
testing.

This data is less obvious and a rigorous test is 

required to draw conclusions.



Paired Data

• Suppose we want to know if blood pressure is higher, or lower, in the 
evening than in the morning.

• Study Design 1: We could take blood pressure measurements from 100 
individuals in the morning and 100 different individuals in the evening.

• Study Design 2: Or we could take two blood pressure measurements, 
one in the morning and one in the evening, in the same 100 people.

– This is called a “repeated measurement design”.



Repeated 
Measures

• Repeated measures design controls for extreme 
individual variability.

• In this data Measurement 2 was generally two to 
three times higher from baseline (Measurement 1).

• But baseline varies greatly.



Repeated 
Measures

• Consider the graph of the two measurements 
without taking repeated measures into account.

– Graph on the left.

• Compare that to the graph of the ratios of 
Measurement 2 to Measurement 1.

– Graph on the right.

Groups not clearly separated Ratio is more clearly separated from Y=1



Implication
• There are both parametric and non-

parametric tests for repeated measures 
(paired) data.

• You cannot just apply a regular T-test to 
repeated measures data because it 
assumes all observations are independent.

– In paired data the two measurements 
from the same individual are not 
independent.

– The test needs to account for the 
dependence.

• One way to do this is to work with ratios:

– E.g., evening/morning and using the 
null hypothesis

H0: mean ratio = 1



Permutation Test for Paired Data

• What are the appropriate 
permutations in the context of 
repeated measures?

• When they aren’t repeated 
measures, we just swap 
anything in column 1 with 
anything in column 2.



Permute 
Within 
Subject • With repeated measures (paired) data we only 

swap the measurements from the same 
subject.

• We’ll do this swap a bunch of times until it’s 
well randomized. 

– That then constitutes one permutation.



Number of 
Paired 

Permutations

• With unpaired data there’s 20
10

= 184,756 permutations.

• With paired data there are 210 = 1,024 permutations.

– So far fewer.  That means the smallest possible p-value 

is 
1

1024
= 0.00097



If you are comparing 
measurements at two 

times, why not always use 
repeated measures?

• For several reasons.

• For one, you may have to sacrifice the 
animal to make the measurement.

– Blood, skin, hair, even adipose can be 
obtained from live animals. 

– And various biometrics like blood 
pressure.

– Most other tissues and many 
biometrics require sacrifice.

• E.g. brain tissue or total weight of 
brown adipose fat in a mouse.



Variability Also Matters

• Doing a paired test can lower the variability 
of the measurements (by working with 
ratios).

• But what if there is no subject-to-subject 
variability to begin with?

– In that case working with ratios has not 
decreased the variance.

– But now we have less permutations and 
less powerful tests in general.

• In a nutshell, paired tests help you 
when there’s a lot of subject level 
variance and hurt you when there isn’t.



The Wilcoxon 
Signed-Rank Test

• There’s also a rank-based non-parametric 
method for paired data, called the 
Wilcoxon Signed-Rank Test.
– Mann-Whitney: Unpaired
– Wilcoxon: Paired (repeated measures)

• Call measurement 1 𝑚1 and 
measurement 2 𝑚2.

• There are N subjects and these two 
measurements made for each.

• Wilcoxon works with the list of N 
differences

𝑚1 − 𝑚2

• These are then sorted and given ranks.

• Under the null, half should be positive 
and half negative.



The Wilcoxon 
Signed-Rank Test

• Under the null we expect this difference 
to be positive in about half the subjects 
and negative in the other half.

• A quantity T is obtained by adding the 
ranks for each subject for which the 
difference 𝑚1 − 𝑚2 > 0 and subtracting 
the rank for each subject for which the 
difference 𝑚1 − 𝑚2 < 0 

• T is another quantity like R in Mann-
Whitney for which it is relatively easy to 
calculate its distribution under the null 
hypothesis, without making any 
parametric assumptions.

• We’re skipping the details, for time.
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