
Introduction to
Bioinformatics

Gregory R. Grant
Genetics Department
ggrant@pennmedicine.upenn.edu

ITMAT Bioinformatics Laboratory

University of Pennsylvania

Professor

Gregory R. Grant
Topic 18

Machine Learning

Teaching Assistants

Chetan Vadali

December 4th-6th, 2023

mailto:ggrant@pennmedicine.upenn.edu

Supervised Learning
• Machine Learning divides into

two main types, supervised
and unsupervised.

• Supervised learning is when
you have training data where
you know the “truth”.

– The truth means you know both the values of the independent and
the dependent variables.

– The goal is to teach a machine how to infer the value of the
dependent variable from independent variables.

– That will be done on future data where we know the values of the
independent but do not know the corresponding dependent.

Unsupervised Learning

• Unsupervised learning is when
you have data, and you want to
search for unknown
relationships between various
subjects.

• For example, single cell RNA-Seq reveals novel cell types.

• We’re going to talk about supervised learning first.

Unsupervised vs. Supervised

What is a Machine?

• A machine in this context is a mathematical
construct.

• Such a construct is usually called a “model” and
involves specifying two things.

1. The form of the model.

2. The parameters.

• For example:

– The form might be a straight line in the X-Y
plane.

– The parameters are the slope and Y-
intercept.

• This simple example is the model underlying
simple linear regression.

• Models can be as simple or as complex as the
problem at hand requires.

What is Learning?
• The “learning” part is where we use data to specify the model.

• But it’s (usually) not the form of the model that is “learned”
from the data, it’s the parameters.

• We might plot the data first to help decide on the best model
(line, parabola, etc.) but strictly speaking, that’s not the
“learning” part, even though it can also involve the data.

The Learning Step
• The “learning” part is where we determine the parameters,

once the shape (form) has been established.

• For simple linear regression in the X-Y plane, we plot the
data as points and then fit a line to it.
– Fitting the line is the learning part.

– Deciding to model the data with a straight line was preliminary to
learning.

• If we were modelling with a parabola and not a straight line,
then there’d be three parameters:

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

– 𝑥 and 𝑦 are the variables.

– 𝑎, 𝑏 and 𝑐 are the parameters.

The Form of the Model

• In machine learning, the form of the
model is typically determined by a
human.
– The form is based on what a human thinks

would work best for the problem at hand.

• Mother Nature does generate data
according to some specific distribution.
– Known only to Mother Nature and God.
– In theory that one distributional form is

the one right model, and all others are
wrong.

• But in practice, Mother Nature’s
distribution may be intractably complex.
– And we only need an approximation to

achieve our goals at hand.

• Which model is best is always debated.
Each person will develop preferences.
– So, it is an art as much as a science.

Two Types of Problems

• Machine Learning is for two types of problems.

1. Prediction

2. Classification

• Example of prediction: predict a person’s lifespan from
three variables: BMI, income and number of cigarette’s
smoked per day.

– In this case what is produced is a value from a
continuum (age can be any number between 0 and
130).

• Example of classification: determine a disease state from
several measurements of blood.

– In this case what is produced is binary
(healthy/affected).

– Or it may just return probabilities of being in each
category.

– But ultimately, it’s trying to predict a category, not a
number.

• In both cases, something is determined (output)
from a set of measurements (input).

Types of Models

• Much of machine learning
is based on regression.

• But there are many other
types of models.

• They have little in
common except that each
has a set of parameters
that are “learned” from
“training data” where the
truth is known.

Decision Trees

• As an example of a machine
learning model completely different
from regression, consider a decision
tree.

• Here the parameters are the
probabilities at the leaves.

• For a decision tree, the training
process is straightforward:

– Collect a bunch of data where the
truth is known (the truth is gene
expression measurements from
genes A, B and C from a bunch of
subjects all of whom have known
disease state).

– Count how many subjects are in
each category.

– Estimate probabilities as ratios.

Considerations

• Every model is different.
– But each has parameters that can be

determined from data.

• Many considerations go into
which type of model to use.

• Two main considerations are:

1. How much data is available?

2. How much do you care
about understanding of why
something is true.

Neural Nets

• Neural Networks are one type of
model that has been very
successful lately.

• Most of the recent attention in
machine learning is due to things
now being done with neural nets.

– ChatGPT

– Self-driving cars

– Chess, Go and other games

– Handwriting and voice
recognition.

– Language translation

– Etc.

Why Now?

• The remarkable success of neural nets is due to what are
called “deep learning” algorithms.

– Neural Nets can have a lot of parameters.

– Deep Learning Algorithms are algorithms for
training the parameters of the model.

– Neural Nets are complex models, but that’s why
they can do complicated things.

• Neural networks have been around for a long time and
so have deep learning algorithms. Decades.

• But they needed two things to come available in order
to thrive, which only recently became widely available.

1. Massive amounts of data.

2. Massive compute power.

• Neural Nets aren’t appropriate for many problems in
biology.

– They’re good for some problems, but often massive
amounts of data is hard to come by.

Interpretation

• Another downside of neural nets is that they are black
boxes.

• Often, we model things in biology to gain an understanding
of why things are true.

• In contrast to neural nets, when we perform regression, we
can evaluate how the independent variables determine
the dependent variables.
– That information is encoded in the beta coefficients.

Natural Language
- for example -

• Suppose we want to understand how a
human produces language.

• A neural network can be taught to speak
remarkably similarly to a human.
– For example, ChatGPT is amazing.

• But even if it passes the Turing test and the
output is indistinguishable from a human by a
human, it tells us nothing about how a human
brain actually produces language.
– We can’t even understand how the

neural net does it because it uses deep
learning.

– However it manages to do it, it has
nothing to do with how humans do it.

A Time and a Place

If we could use deep learning to identify the causative SNP in a GWAS
then that would be justified.

But once we know which SNP is
causative, we wouldn’t use deep
learning to understand how the SNP
causes the phenotype.

The mechanism of action.

We might however use regression, which is still machine learning, but
can provide insight into the relations between the relevant variables.

Our Goals

WE WILL NOT BE DISCUSSING
NEURAL NETS OR DEEP LEARNING.

WE WILL BE DISCUSSING REGRESSION
MODELS AND CLUSTERING METHODS.

Types of Regression Models

Regression is used for
both prediction and

classification.

In other words,
dependent variables

can be both
continuous or discrete.

Independent variables
can also be continuous

or discrete.

E.g., gene expression
(continuous) or gender

(discrete).

What is ANOVA?

• ANOVA stands for “Analysis of Variance”.
– It’s just a flavor of regression.

– If the dependent variable is continuous
and all independent variables are
categorical, then we’re doing ANOVA.

• For example, we may be interested in
the expression of a gene (continuous
dependent variable) as a function of
gender and genotype (two independent
categorical variables).

• Question: Is the gene DE between
genotypes, independent of gender.

The Machine
Learning Process

• The “learning” part involves data in two
different ways.

1. To estimate the parameters

2. To evaluate performance

• In other words, we don’t just train the
model, we also need to know how good it
is.
– There will always be some minimal

accuracy below which the “machine”
cannot be used for the intended purpose.

– And if two models are both good enough,
we still want to know which is better.

• Therefore, data is divided (at least) into
two parts: Training and Test

Regression Choices

• Decision #1: to use a regression model

• Decision #2: to choose the form of the regression function.
– For one independent variable, the regression

function is a curve.
– For two variables it’s a surface.
– For three variables it’s called a “hypersurface”.
– In general, it’s just called the “regression function”.

• Decision #3: to chose the family of regression functions.
• Suppose there’s one independent variable.
• We know the regression function is a curve.
• But we still don’t have “parameters” to learn until we

decide on the family of curves.
– Family=Lines: 2 parameters
– Family=Parabolas: 3 parameters
– Family=Cubics: 4 parameters
– N-th degree polynomials: N+1 parameters.

Other Families of Curves

• Regression curves need not be polynomials.

• Could be a cosine wave, which has 4 parameters.
𝛼 + 𝛽cos(𝛾𝑥 + 𝜃)

– 2𝛽 is the amplitude, 2π𝛾 is the period, 𝛼 and 𝜃 are vertical and horizontal shifts.

• Could be exponential, logarithmic, rational, radical, there are many
families of curves.

• Could also be any combination of the above, for example a linear
function plus a trig function

𝑎𝑥 + 𝑏 + cos(𝑐𝑥2)

Degenerate Curves

• Consider the general formula for a 2nd
degree polynomial:

𝑎𝑥2 + bx + c

• A straight line is covered by this, by
setting 𝑎 = 0.

– A straight line is called a
“degenerate” parabola.

• Likewise, any linear or quadratic
function is covered by the general
formula for a cubic:

𝑎𝑥3 + 𝑏𝑥2 + cx + d

Polynomial Degree

• Based on the previous slide, why do we have to
decide whether the form of the model should be
linear, or quadratic, or cubic, or etc.?

• Why not make the form of the model some high
degree polynomial, since that covers all these
cases?

• Several reasons.

• First off, a degree n polynomial requires at least
n+1 points to fit to it.
– We cannot fit a line to one point, a parabola

to two points, etc.
– So, the degree will be limited by the number

of data points.

• But there’s a much bigger reason, something
called “overfitting”.

Overfitting

• Suppose there are n data points in
the training data.

• Then a degree n-1 polynomial can
be found that passes through all of
them precisely.

• Such a curve would have a “least-
squares error” equal to zero, so it
would give the best possible fit.

• But it might still be unlikely to
explain future data very well.

Overfitting
Example

Suppose the data look like this.

The true model of the data is a
straight line.

Assume Mother Nature generated
the model according to the straight-
line (𝑎𝑥 + 𝑏), with some wiggle (ℰ).

Overfitting
Example

A straight line fits the data well.

As it should, given it’s the true
model.

Overfitting
Example

Suppose we decide to train a model
with 10th degree polynomials.

We assume (erroneously) that if a
straight line is the best fit then it
will make the higher degree
coefficients zero in order to fit a
straight line.

But the problem is, a 10th degree
polynomial can be made to go
through all six points precisely.

(even with 5th degree it could be
made to go through them all)

Overfitting
Example
Since the true model of the
data is linear, the 10th degree
curve will give very bad future
predictions for many values of
𝑥.

In language to be developed
soon, we say the 10th degree
model has low (in fact zero) “in
sample” error but high “out of
sample” error.

The straight line on the other
hand has low (but non-zero) “in
sample” error but also “low out
of sample” error.

The 10th degree model suffers
from overfitting.

• We train models to have low in sample error.

• We evaluate their performance by their out

of sample error.

• It is the out of sample error that must be low,

or we do not have a good model.

The Hypothesis Set
• From the previous slides it should be clear that we start with a set of “candidate” functions.

– For example, all linear functions, or all quadratics, or possibly all polynomials or all continuous functions.

• Each candidate is a “machine,” and our goal is to chose one. A best performer.

• These functions are also called “hypotheses” because each is potentially the true
relationship between the independent and dependent variables.

• The set of candidate functions (e.g., all linear) is therefore called the “hypothesis set” or the
“hypothesis space”.

The Hypothesis Set

• The bigger the hypothesis set, the more likely it is to contain the true function,
but the more likely it is to overfit the training data.

– Therein lies one of the fundamental tradeoffs in machine learning.

More Terminology

The independent variables are also called “features”
or “input variables”

Values of the dependent variable are also called
“labels”.

So, in this language, training data is data where the
values of the features are given and where the
corresponding labels are also known.

Classification
features are continuous variables (Gene A, Gene B)

labels are categorical variables (blue, green)

Regression
features is continuous (height)
labels also continuous (weight)

This diagram
describes the
components of a
machine learning
procedure.

We will go
through this
piece-by-piece.

Anatomy of a Machine
Learning Procedure

The Unknown Distribution

Unknown
Distribution

• The relationship between the
features and labels is rarely
deterministic.

• For example, correctly deriving
the gender of a person using
only their height is not
possible.

• However, there is a probability
that a given person has a
certain gender given their
height.

Unknown Distribution

• If 𝑥 are the feature values and 𝑦 are
the labels, then the unknown (joint)
distribution 𝑃(𝑥, 𝑦) captures:

– The conditional probability
distribution of the feature values
given the labels

– The conditional probability
distribution of the labels given
feature values

• The unknown distribution is part of
reality and usually, we have no control
over it

The
Hypothesis
Set

The
Hypothesis

Set

• We are searching for a function
that assigns labels to feature values

𝑓: 𝑋 → 𝑌

• The Hypothesis set ℋ is the set of
all candidate functions which we
consider in our search

– We are generally free to choose
our hypothesis set

– For example, all linear
functions, or all quadratics, etc.

The Loss Function

The Loss Function
• How can we compare two hypotheses to decide

which one is better?
• What does better or best even mean?

– For this we need an error measure to measure how
well a hypothesis performs.

– An error measure is almost always derived from a
loss function

• A loss function measures how close a prediction
gets to the truth for a single subject.

• A loss function takes three values as inputs:

• The loss value 𝐿(𝑥, ො𝑦, 𝑦) quantifies how far the
true value of the label is from the predicted
value ො𝑦 for a single subject.

Examples
of Loss

Functions

The Loss Function

• The loss function is one of the choices we must make.

• The choice of a loss function affects the ranking of
hypotheses and hence the outcome of the learning
process.

• Loss functions are often chosen because they have nice
mathematical properties such as continuity or
differentiability.

• This choice can be difficult, so in many cases people
stick with defaults such as 0–1 or quadratic loss.

Symmetry
of the Loss
Function

• The 0-1 loss function is symmetric in
the sense that false positives are
penalized by the same amount as
false negatives.

• This might not realistic, for example
if we are trying to test for a
dangerous highly contagious
disease.

– In this case, false negatives have
much more dire consequences than
false positives.

Alternative to the 0-1 Loss Function

This loss function accounts for the asymmetry between false-
positives and false-negatives.

The Error Measure

The out-of-sample Error Measure

• Once the choice of the loss
function has been made, we define
the (out-of-sample) error measure
as the expected loss, with respect
to the unknown true distribution.

• It depends on the hypothesis.
• And the lower it is, the better the

hypothesis.

• Therefore, it is used to compare
the performance of different
hypotheses, to choose a good one.

• Since the true distribution is
unknown, we cannot calculate it
exactly, but we estimate it using
the “test” data.

The Error Measure Example

Example of the error measure for the 0-1 loss function.

The Training Data

The Training Data
• To do supervised learning, we need data which contain input

values and the corresponding labels.

• Like a bunch of question and answer pairs

The inputs are Gene 1 and the labels

are Gene 2

The inputs are Gene 1 and Gene 2

and the labels are the categories:

affected/not affected

REGRESSION CLASSIFICATION

• Regression

• Classification

The
Learning

Algorithm

The Learning
Algorithm

• S = { 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)} is training
data.

– Also called a “sample”.

Example of an Algorithm
- least squares -

• The Least Squares procedure of fitting a line
to points in simple linear regression is the
learning algorithm.

• Any method used to fit the regression
function to training data is a learning
algorithm.

• For classification, any method that partitions
the plane into two parts corresponding to
the two categories is an algorithm.

• Some algorithms are better than others.

In a
Nutshell

Training vs. Testing

• What was described above is about training the
model.

• But once trained, we need to evaluate how well it
performs.

– And perhaps modify things if performance is less
than required.

• Therefore, data (where the truth is known) must be
divided into at least two parts:

– Training data – to train the model

– Test data – to evaluate the model

Training vs.
Validation vs. Testing

• If the test data indicates performance is less than
desired, then the model may be modified further.

• At this point, yet more test data is required to
evaluate performance, because of the following:

• MAXIM: Final performance cannot be evaluated
on data which was used to inform the model in
any way.

• Once the test data has been used to further
modify the model, it is no longer test data, it has
become training data.
– Which is often rebranded as “Validation” data.

• Validation data is not data which was used for
initial training, nor data which was used for final
evaluation of performance.
– It is data which is used for further refinement after

initial training.

In-Sample and Out-
of-Sample Error

• We now turn to matters of evaluating the performance of the model.

• With training or test data, since we know the truth, we can put a metric on how
close the model gets to the truth.
– Which could be a distance (for prediction), or a 0-1 loss (for classification).

• IN-SAMPLE: If we apply the error metric to training data, then we call it the “In-
Sample Error”

• OUT-OF-SAMPLE: If we apply the error metric to the test data, then we are
approximating the “Out-of-Sample Error” which is defined to be the true error
based on the true (unknown) distributions.
– Since the distributions are unknown, we can only approximate the true (out-of-sample)

error, by using test data.

Empirical Risk
Minimization

• The hypothesis set must be big enough to
either contain the true function or at least
one close to it.
– But we must keep ℋ from being too big

(because of overfitting).

• Here ℋ is the hypotheses set.
• 𝑓∗ is the true (unknown) hypothesis by which

Mother Nature has generated the data.
• ℎ∗ is the hypothesis in ℋ that is closest to 𝑓∗.

– With ℋ given, we can’t do better than
ℎ∗.

• ℎ is the hypothesis in ℋ found by the
(machine) learning algorithm.
– ℎ is not necessarily ℎ∗, because there’s no

guarantee the algorithm finds the best
hypothesis in ℋ.

Empirical Risk
Minimization

• The distance from ℎ to 𝑓∗ is the total
error.

• The total error decomposes into two
parts:

1. The distance from ℎ to ℎ∗(called the
estimation error)

2. And the distance from ℎ∗ to 𝑓∗ called
the approximation error.

Trade-Off

• We can get the approximation
error down to zero by expanding
the hypothesis set.

• At the extreme it could contain all
possible functions.

• That would guarantee 𝑓∗ is in the
set and therefore 𝑓∗ = ℎ∗

• But the estimation error increases
because of overfitting.
– In other words, we can get the in-

sample error low, while the out-of-
sample error remains high.

Bayes Risk

• Even if we could find 𝑓∗, using it for
classification only reduces the error to be as
low as possible.

• But it cannot lower it to zero, unless there
happens to be a deterministic relationship
between the independent and dependent
variables.

• For example, height can only predict weight
so well.

• In other words, 𝐸out 𝑓∗ > 0.

• 𝐸out 𝑓∗ is the inherent error that cannot be
removed.

• It is called the “Bayes risk” and is denoted
𝐸out

∗ .

The True (Total)
Error

• The true total error of a model is
composed of three parts.

1. The Bayes risk, which is the
minimal possible error.

2. The approximation error, which
comes from ℋ being too small
to contain the true function 𝑓∗.

3. The estimation error, which
comes from the learning
algorithm not finding the best
possible function in ℋ.

The Learning Inequality – first thing to notice

• This inequality is explained on the next slides.

• But the first thing to notice is the right-hand side has |ℋ|, which is the size of the
hypothesis set.

• For the examples we’ve been looking at, ℋ = ∞ (there are infinitely many lines in the
plane, for example) and this makes the inequality uninteresting.
– Everything is less or equal to infinity.

• There is a version of the Learning Inequality that works for infinite hypothesis set, but it
involves some mathematical technicalities.

• We’re going to work with this finite version to avoid that math, because the main
concept is the same, a trade-off between model complexity and size of the training data
set.

The Learning Inequality – second thing to notice

• The second thing to realize is that 𝐸in ℎ is a random variable.
– The in-sample error is a function of the training data, and training data is a random sample of

data from a population.

• 𝐸out ℎ on the other hand is not random, it’s the true error from using ℎ which is an
expected value with respect to the true (unknown) distributions. So 𝐸out ℎ is just a
fixed number.

• Because 𝐸in ℎ is random, that’s why the left-hand side of the Learning Inequality is a
probability. It’s a bound on a probability. Read it like this:

– The probability that 𝐸in ℎ − 𝐸out ℎ is larger than 𝜀 is less than 2|ℋ|𝑒−2𝑛𝜀2

The Learning Inequality - explained

• We’re searching for ℎ ∈ ℋ which has 𝐸out ℎ as close as possible to the best possible
𝐸out 𝑓∗ .

– 𝐸out 𝑓∗ is what we’re also calling “the Bayes Risk”, the inherent minimal possible error.

– Once we find such an ℎ, we denote it ℎ.

• The main things that causes 𝐸out ℎ and 𝐸out 𝑓∗ to be different is:

• ℋ is too small – so large approximation error (model too simple).

• ℋ is too big – overfitting (model too complex).

– Overfitting causes 𝐸out ℎ to be larger than 𝐸in ℎ .

– So, we want |𝐸in ℎ − 𝐸out ℎ | to be small.

• To deal with this, we have a powerful theorem, called “The Learning Inequality” which puts a
bound on |𝐸in ℎ − 𝐸out ℎ |.

The Learning Inequality - interpretation

• If the left-hand side is small,
then overfitting is under
control.

• And this inequality tells us
we can get the left-hand
side small by making the
right-hand side small.

• And the right-hand side
depends on only two things:

1. The right-hand side gets smaller as n gets bigger.
• More replicates, less chance of overfitting.

2. And it gets bigger as ℋ gets bigger.
• Bigger ℋ, more chance of overfitting

Empirical
Risk

Minimization
- in a nutshell -

Empirical Risk
Minimization

• ℋ3 is too small.
– Large approximation error.

• ℋ1 is too big.
– Danger of overfitting, large

estimation error.

• ℋ2 is just right.

Empirical Risk
Minimization Example

• Supposed the true model of some
data is given by the following cubic.

y = 1 − 10𝑥 + 35𝑥2 − 25𝑥3 + ℰ

• 𝑥 is the independent variable

• y is the dependent variable.

• ℰ is the non-deterministic part.

– The Bayes risk of the system.

The True Model is the
Optimal Predictor

• This is the regression model that
generated the data:

y = 1 − 10𝑥 + 35𝑥2 − 25𝑥3 + ℰ

• The optimal predictor is therefore:

𝑓∗(𝑥) = 1 − 10𝑥 + 35𝑥2 − 25𝑥3

• This is (usually) known only to God. We’re
specifying it here for illustrative purposes.

• The job of machine learning is to recover 𝑓∗ (or
as close as possible) from the data itself.

The
Hypothesis

Set

• We’ll consider different
hypothesis sets, to see how some
are too small, some too big, and
some are just right in the sweet
spot.

• Let ℋ𝑝 be the set of polynomials
of degree 𝑝.

ℋ0 ⊆ ℋ1 ⊆ ℋ2 ⊆ ℋ3 ⊆ ⋯

• ℋ0 are horizontal lines.
• ℋ1 are straight lines.
• ℋ2 are parabolas.
• Etc.

The best possible predictors
from each class

Since we’re playing God in this example,
we can calculate exactly what ℎ∗ is.

Recall ℎ∗ is the best predictor in ℋ.

We’re not using a learning algorithm to
find ℎ∗.

The learning algorithm will find ℎ which
it hopes is close to ℎ∗.

ℎ∗ is shown in the figure for ℋ0 through
ℋ3 with respect to the quadratic loss
function.

Minimal Risk
Next, for each ℋ𝑝 we find the
function ℎ that minimizes the
error (the expected loss), with
respect to the quadratic loss
function.

In other words, ℎ is the function
that minimizes the in-sample
error.

In other words, ℎ is the function
that minimizes the error with
respect to the training data (and
the quadratic loss function).

Keep in mind, as 𝑝 grows,
overfitting gets worse and
consequently, the distance from
ℎ to ℎ∗ increases.

The Data and
the True Model

These points represent our
subjects.

This is the training data.

The real model is a cubic and
we’re going to fit a 0-degree
polynomial to it, and then a 1st
degree, then a 2nd, etc.

Including degrees that are higher
than the true model: 4th, 5th, 6th,
etc. to see how overfitting gets
worse as ℋ𝑝 grows.

ℋ0
The best horizontal line that fits the training data

ℎ

ℋ1
The best straight line that fits the training data

ℎ

ℋ2
The best parabola that fits the training data

ℎ

ℋ3
The best cubic that fits the training data

ℎ

ℋ4
The best quartic that fits the training data

ℎ

ℋ5
The best quintic that fits the training data

ℎ

ℋ6
The best 6th degree polynomial that fits the training data

ℎ

ℋ7
The best 7th degree polynomial that fits the training data

ℎ

ℋ8
The best 8th degree polynomial that fits the training data

This is the first time we start to see evidence of overfitting.

ℎ

ℋ9 Overfitting is already a serious issue at degree 9, which
is still far below the number of data points.

This shows the overfitting issue cannot be taken lightly
even if when there is a fair amount of data.

The best 9th degree
polynomial that fits the
training data

ℎ

Continuing

• We’re going to take this all
the way to 27th degree
polynomials.

• But we’re going to stop
showing the best fit ℎ.

• Instead, we will graph the
various out-of-sample errors
as functions of the degree.

• We’ll start with 𝐸out
ℎ .

𝐸out
ℎ

This is the total error on the
final chosen best
performer, for each
hypothesis set ℋ𝑝

𝑝 is the horizontal axis

• The error is very high for
𝑝 = 0, 1 and 2.

• It hits its minimum at 𝑝 =
3 since that’s the true
model.

• Then it raises from there,
because of overfitting.

• It bottoms out at 0.25
which is the Bayes
(minimal) possible error.

Approximation,
Estimation and Bayes

Errors

The total error is the sum of
the three components.

• The blue dashed line is the
Bayes risk, which does not
depend on ℋ.

• The orange line is the
estimation error, which
starts low and climbs due
to overfitting.

• The green line is the
approximation, which
drops to zero when 𝑝 = 3
and ℋ contains the true
model.

Conclusions

• Fitting training data well means 𝐸in(ℎ) ≈ 0.

– ≈ 𝟎 means “is close to zero”.

– That is different from making good predictions about new data,
which means 𝐸out(ℎ) ≈ 0.

• Complex hypotheses sets lead to overfitting the test data resulting
in 𝐸in(ℎ) ≈ 0 while 𝐸out(ℎ) is not close to zero and may be quite
large.

• Overly simple hypotheses sets cannot fit the data well, meaning
𝐸in(ℎ) is large for all ℎ ∈ ℋ.

Unsupervised
Methods

Unsupervised
Clustering plays a
big role in biology
and bioinformatics.

NEW TOPIC

Centroids

Consider plotting
several points in the
plane.

Call them “centroids”

Centroids

Every additional
point in the plane is
closest to one of
the centroids.

Centroids

Calculate the three distances
𝑑1, 𝑑2, 𝑑3.

For most points, one of the
distances will be smaller than
the other two.

Centroids

Suppose 𝑑1 is the smallest.

 𝑑1 < 𝑑2 and 𝑑1 < 𝑑3.

Then color the point red.

Centroids

Therefore, three points
partition the plane into
three regions.

The black lines
represent the ties.

In general, 𝑛 ‘centroids’
partition the plane into
𝑛 regions.

Means in the
Plane

• What do we mean by “the mean” of a
bunch of points in the plane?

• Points have two coordinates.

• The x-coordinate of the mean is the
mean of their respective x-coordinates.

• The y-coordinate of the mean is the
mean of their respective y-coordinates.

Unsupervised
Clustering

• There appear to be four
clusters here.

• The goal is to make an
algorithm that can figure
that out and identify the
members of each cluster.

Supervised
Clustering

If we knew the clustering
ahead of time, then we
could make centroids be
the means of each of the
clusters.

That would be
“supervised clustering”

K-Means Clustering
Unsupervised Clustering

K-Means clustering
separates the points into K
clusters according to some
optimization criterion.

Assume for now that K, the
number of clusters, is
known – we’ll see how to
determine k later.

Learning vs.
Optimization

• When we have training data, data where we
know the truth, the goal is usually “learning”.

– We call that “supervised learning”.

• When we do not know the truth, such as in
clustering, we don’t “learn” instead we
“optimize”.

– And we call it “unsupervised learning”.

– We establish a metric that measures quality
of something (usually clusters).

– The metric can then be optimized (which
means we search for values of parameters
that make the metric as big, or as small, as
possible, depending on which is better).

K-Means
Clustering

Start by randomly
assigning locations
to four centroids.

K-Means
Clustering

Assign the data points to
the clusters.

Color each point by which
centroid it is closest to.

K-Means
Clustering

Move the four centroids to
be at the means of the
current clusters.

K-Means
Clustering

Reassign points to clusters
based on the new locations of
the centroids.

You see this is an iterative
process that improves at each
iteration.

K-Means
Clustering

Move the centroids again, to the
means of the new clusters.

In just two iterations it’s already
close to optimal.

Optimal here means nothing
changes upon subsequent
iterations.

K-Means
Clustering

Reassign points to
clusters based on the
new centroid positions.

K-Means
Clustering

Looks right.

Further iterations might
change the partition of the
plane slightly but will no
longer change the clusters.

Time to stop.

The Big Picture
Most unsupervised machine learning
methods are based on iterative
procedures such as this.

The computer starts by knowing nothing,
it starts by taking a random guess at the
parameters.

Here, the centroids are what’s
guessed at.

If the updating rules are sensible, the
estimates of the parameters improve with
each iteration.

I.e., the machine learns

Objective Functions
• How do we know if the parameter

updating procedure is sensible?

• We use an objective function that the
algorithm aims to minimize

• In the case of k–means clustering we
have, for clusters 𝐶1, … , 𝐶𝐾

𝑓 𝑚1, … , 𝑚𝑘 =

𝑗=1

𝑘

𝑥𝑖∈𝐶𝑗

𝑑(𝑥𝑖 , 𝑚𝑗)

The Big
Picture

Evaluation
of Results

This raises the issue of evaluation of results

Hence, we don’t know if we are getting the “best”
possible clustering

However, they are almost never guaranteed to find
the global minimum of the objective function

Machine learning algorithms try to decrease the
objective function in each step

Evaluation of Results

• Use statistical measures of purity and
homogeneity of clusters.
– Such as the Silhouette method (next

slide)

• Compare with external sources of truth, such as
GO annotations.
– Clustering that give the best enrichment p-values

is validating.

• Bootstrap — randomly resample from the data
set and then rerun the clustering

• To get a handle on how variable the results are
as we swap one training data set with another.

Silhouette
Scores

Silhouette
Scores

Our
Clustering

The clustering from

the k-means

algorithm, with k=4.

Silhouette Scores Each of the 150 data points
has its own silhouette score.

Average
Silhouette
Score = 0.68

Bad
Clustering

The clustering from

four randomly

placed centroids.

Silhouette Scores for Bad
Clustering

Lower silhouette scores
indicate worse clustering.

Average
Silhouette
Score = 0.32

Hyperparameters

In supervised learning we must usually specify the
form of a model before we have parameters to
train.

Unsupervised machine learning algorithms usually
also require specifying preliminary properties, often
themselves parameters.

These are called “hyperparameters”

For example, the K to use in K-means
clustering.

Hyperparameters must be specified before the
optimization loop can be initiated.

There are many tuning procedures used to
determine optimal values of hyperparameters

K-Means
Clustering
Example

• In the case of k–means clustering, the
number of clusters k is a
hyperparameter.

• And the objective function is

𝑓 𝑚1, … , 𝑚𝑘 =

𝑗=1

𝑘

𝑥𝑖∈𝐶𝑗

𝑑(𝑥𝑖 , 𝑚𝑗)

• The objective function is used after k is
determined to determine the centroids.

• It gives a meaningful comparison
between different clusterings, for a
fixed k.

• But it does not give meaningful
comparisons between different values
of k.

Determining K

• Since objective functions cannot be used
to compare between different values K,
they cannot be used to determine the
best value of k.

• If we increase the number of clusters,
the objective function always decreases.
– If we increase the number of clusters to be

equal to the number of data points, then we
can drive the objective function all the way
down to zero.

• The name for this problem is
“overfitting”.
– Overfitting comes up also in unsupervised

machine learning.

Overfitting

• Overfitting can start
to happen with k
even as small as six.

• The objective
function is smaller
than with k=5 but
that does not mean
it’s better.

Average
Silhouette

Scores

The average silhouette
score does allow for a
meaningful comparison
between different
values of k.

Thus, allowing for k to
also be learned from the
data.

	Slide 1: Introduction to Bioinformatics
	Slide 2: Supervised Learning
	Slide 3: Unsupervised Learning
	Slide 4: Unsupervised vs. Supervised
	Slide 5: What is a Machine?
	Slide 6: What is Learning?
	Slide 7: The Learning Step
	Slide 8: The Form of the Model
	Slide 9: Two Types of Problems
	Slide 10: Types of Models
	Slide 11: Decision Trees
	Slide 12: Considerations
	Slide 13: Neural Nets
	Slide 14: Why Now?
	Slide 15: Interpretation
	Slide 16: Natural Language - for example -
	Slide 17: A Time and a Place
	Slide 18: Our Goals
	Slide 19: Types of Regression Models
	Slide 20: What is ANOVA?
	Slide 21: The Machine Learning Process
	Slide 22: Regression Choices
	Slide 23: Other Families of Curves
	Slide 24: Degenerate Curves
	Slide 25: Polynomial Degree
	Slide 26: Overfitting
	Slide 27: Overfitting Example
	Slide 28: Overfitting Example
	Slide 29: Overfitting Example
	Slide 30: Overfitting Example
	Slide 31: The Hypothesis Set
	Slide 32: The Hypothesis Set
	Slide 33: More Terminology
	Slide 34: Classification features are continuous variables (Gene A, Gene B) labels are categorical variables (blue, green)
	Slide 35: Regression features is continuous (height) labels also continuous (weight)
	Slide 36: Anatomy of a Machine Learning Procedure
	Slide 37: The Unknown Distribution
	Slide 38: Unknown Distribution
	Slide 39: Unknown Distribution
	Slide 40: The Hypothesis Set
	Slide 41: The Hypothesis Set
	Slide 42: The Loss Function
	Slide 43: The Loss Function
	Slide 44: Examples of Loss Functions
	Slide 45: The Loss Function
	Slide 46: Symmetry of the Loss Function
	Slide 47: Alternative to the 0-1 Loss Function
	Slide 48: The Error Measure
	Slide 49: The out-of-sample Error Measure
	Slide 50: The Error Measure Example
	Slide 51: The Training Data
	Slide 52: The Training Data
	Slide 53
	Slide 54: The Learning Algorithm
	Slide 55: The Learning Algorithm
	Slide 56: Example of an Algorithm - least squares -
	Slide 57: In a Nutshell
	Slide 58: Training vs. Testing
	Slide 59: Training vs. Validation vs. Testing
	Slide 60: In-Sample and Out-of-Sample Error
	Slide 61: Empirical Risk Minimization
	Slide 62: Empirical Risk Minimization
	Slide 63: Trade-Off
	Slide 64: Bayes Risk
	Slide 65: The True (Total) Error
	Slide 66: The Learning Inequality – first thing to notice
	Slide 67: The Learning Inequality – second thing to notice
	Slide 68: The Learning Inequality - explained
	Slide 69: The Learning Inequality - interpretation
	Slide 70: Empirical Risk Minimization - in a nutshell -
	Slide 71: Empirical Risk Minimization
	Slide 72: Empirical Risk Minimization Example
	Slide 73: The True Model is the Optimal Predictor
	Slide 74: The Hypothesis Set
	Slide 75: The best possible predictors from each class
	Slide 76: Minimal Risk
	Slide 77: The Data and the True Model
	Slide 78: script cap H sub 0
	Slide 79: script cap H sub 1
	Slide 80: script cap H sub 2
	Slide 81: script cap H sub 3
	Slide 82: script cap H sub 4
	Slide 83: script cap H sub 5
	Slide 84: script cap H sub 6
	Slide 85: script cap H sub 7
	Slide 86: script cap H sub 8
	Slide 87: script cap H sub 9
	Slide 88: Continuing
	Slide 89: cap E sub out , open paren h hat , , close paren
	Slide 90: Approximation, Estimation and Bayes Errors
	Slide 91: Conclusions
	Slide 92: Unsupervised Methods
	Slide 93: Centroids
	Slide 94: Centroids
	Slide 95: Centroids
	Slide 96: Centroids
	Slide 97: Centroids
	Slide 98: Means in the Plane
	Slide 99: Unsupervised Clustering
	Slide 100: Supervised Clustering
	Slide 101: K-Means Clustering Unsupervised Clustering
	Slide 102: Learning vs. Optimization
	Slide 103: K-Means Clustering
	Slide 104: K-Means Clustering
	Slide 105: K-Means Clustering
	Slide 106: K-Means Clustering
	Slide 107: K-Means Clustering
	Slide 108: K-Means Clustering
	Slide 109: K-Means Clustering
	Slide 110: The Big Picture
	Slide 111: Objective Functions
	Slide 112: The Big Picture
	Slide 113: Evaluation of Results
	Slide 114: Evaluation of Results
	Slide 115: Silhouette Scores
	Slide 116: Silhouette Scores
	Slide 117: Our Clustering
	Slide 118: Silhouette Scores
	Slide 119: Bad Clustering
	Slide 120: Silhouette Scores for Bad Clustering
	Slide 121: Hyperparameters
	Slide 122: K-Means Clustering Example
	Slide 123: Determining K
	Slide 124: Overfitting
	Slide 125: Average Silhouette Scores

