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Supervised Learning
• Machine Learning divides into 

two main types, supervised 
and unsupervised.

• Supervised learning is when 
you have training data where 
you know the “truth”.

– The truth means you know both the values of the independent and 
the dependent variables.  

– The goal is to teach a machine how to infer the value of the 
dependent variable from independent variables.

– That will be done on future data where we know the values of the 
independent but do not know the corresponding dependent.



Unsupervised Learning

• Unsupervised learning is when 
you have data, and you want to 
search for unknown 
relationships between various 
subjects.

• For example, single cell RNA-Seq reveals novel cell types.

• We’re going to talk about supervised learning first.



Unsupervised vs. Supervised



What is a Machine?

• A machine in this context is a mathematical 
construct.

• Such a construct is usually called a “model” and 
involves specifying two things.

1. The form of the model.

2. The parameters.

• For example:

– The form might be a straight line in the X-Y 
plane.

– The parameters are the slope and Y-
intercept.

• This simple example is the model underlying 
simple linear regression.

• Models can be as simple or as complex as the 
problem at hand requires.



What is Learning?
• The “learning” part is where we use data to specify the model.

• But it’s (usually) not the form of the model that is “learned” 
from the data, it’s the parameters.

• We might plot the data first to help decide on the best model 
(line, parabola, etc.) but strictly speaking, that’s not the 
“learning” part, even though it can also involve the data.



The Learning Step
• The “learning” part is where we determine the parameters, 

once the shape (form) has been established.

• For simple linear regression in the X-Y plane, we plot the 
data as points and then fit a line to it.
– Fitting the line is the learning part.

– Deciding to model the data with a straight line was preliminary to 
learning.

• If we were modelling with a parabola and not a straight line, 
then there’d be three parameters:

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

– 𝑥 and 𝑦 are the variables.

– 𝑎, 𝑏 and 𝑐 are the parameters.



The Form of the Model

• In machine learning, the form of the 
model is typically determined by a 
human.
– The form is based on what a human thinks 

would work best for the problem at hand.

• Mother Nature does generate data 
according to some specific distribution.
– Known only to Mother Nature and God.
– In theory that one distributional form is 

the one right model, and all others are 
wrong.

• But in practice, Mother Nature’s 
distribution may be intractably complex.
– And we only need an approximation to 

achieve our goals at hand.

• Which model is best is always debated.  
Each person will develop preferences.
– So, it is an art as much as a science.



Two Types of Problems

• Machine Learning is for two types of problems.

1. Prediction

2. Classification

• Example of prediction: predict a person’s lifespan from 
three variables: BMI, income and number of cigarette’s 
smoked per day.

– In this case what is produced is a value from a 
continuum (age can be any number between 0 and 
130).

• Example of classification: determine a disease state from 
several measurements of blood. 

– In this case what is produced is binary 
(healthy/affected).

– Or it may just return probabilities of being in each 
category.

– But ultimately, it’s trying to predict a category, not a 
number.

• In both cases, something is determined (output) 
from a set of measurements (input).



Types of Models

• Much of machine learning 
is based on regression.

• But there are many other 
types of models.

• They have little in 
common except that each 
has a set of parameters 
that are “learned” from 
“training data” where the 
truth is known.



Decision Trees

• As an example of a machine 
learning model completely different 
from regression, consider a decision 
tree.

• Here the parameters are the 
probabilities at the leaves.

• For a decision tree, the training 
process is straightforward:

– Collect a bunch of data where the 
truth is known (the truth is gene 
expression measurements from 
genes A, B and C from a bunch of 
subjects all of whom have known 
disease state).

– Count how many subjects are in 
each category.

– Estimate probabilities as ratios.



Considerations

• Every model is different.
– But each has parameters that can be 

determined from data.

• Many considerations go into 
which type of model to use.

• Two main considerations are:

1. How much data is available?

2. How much do you care 
about understanding of why 
something is true.



Neural Nets

• Neural Networks are one type of 
model that has been very 
successful lately.

• Most of the recent attention in 
machine learning is due to things 
now being done with neural nets.

– ChatGPT

– Self-driving cars

– Chess, Go and other games

– Handwriting and voice 
recognition.

– Language translation

– Etc.



Why Now?

• The remarkable success of neural nets is due to what are 
called “deep learning” algorithms.

– Neural Nets can have a lot of parameters.

– Deep Learning Algorithms are algorithms for 
training the parameters of the model.

– Neural Nets are complex models, but that’s why 
they can do complicated things.

• Neural networks have been around for a long time and 
so have deep learning algorithms.  Decades.

• But they needed two things to come available in order 
to thrive, which only recently became widely available.

1. Massive amounts of data.

2. Massive compute power.

• Neural Nets aren’t appropriate for many problems in 
biology.

– They’re good for some problems, but often massive 
amounts of data is hard to come by.



Interpretation

• Another downside of neural nets is that they are black 
boxes.

• Often, we model things in biology to gain an understanding 
of why things are true.

• In contrast to neural nets, when we perform regression, we 
can evaluate how the independent variables determine 
the dependent variables.
– That information is encoded in the beta coefficients.



Natural Language
- for example -

• Suppose we want to understand how a 
human produces language.

• A neural network can be taught to speak 
remarkably similarly to a human.
– For example, ChatGPT is amazing.

• But even if it passes the Turing test and the 
output is indistinguishable from a human by a 
human, it tells us nothing about how a human 
brain actually produces language.
– We can’t even understand how the 

neural net does it because it uses deep 
learning.

– However it manages to do it, it has 
nothing to do with how humans do it.



A Time and a Place

If we could use deep learning to identify the causative SNP in a GWAS 
then that would be justified.

But once we know which SNP is 
causative, we wouldn’t use deep 
learning to understand how the SNP 
causes the phenotype.

The mechanism of action.

We might however use regression, which is still machine learning, but 
can provide insight into the relations between the relevant variables.



Our Goals

WE WILL NOT BE DISCUSSING 
NEURAL NETS OR DEEP LEARNING.

WE WILL BE DISCUSSING REGRESSION 
MODELS AND CLUSTERING METHODS.



Types of Regression Models

Regression is used for 
both prediction and 

classification.

In other words, 
dependent variables 

can be both 
continuous or discrete.

Independent variables 
can also be continuous 

or discrete.

E.g., gene expression 
(continuous) or gender 

(discrete).



What is ANOVA?

• ANOVA stands for “Analysis of Variance”.
– It’s just a flavor of regression.

– If the dependent variable is continuous 
and all independent variables are 
categorical, then we’re doing ANOVA.

• For example, we may be interested in 
the expression of a gene (continuous 
dependent variable) as a function of 
gender and genotype (two independent 
categorical variables). 

• Question: Is the gene DE between 
genotypes, independent of gender.



The Machine 
Learning Process

• The “learning” part involves data in two 
different ways.

1. To estimate the parameters

2. To evaluate performance

• In other words, we don’t just train the 
model, we also need to know how good it 
is.
– There will always be some minimal 

accuracy below which the “machine” 
cannot be used for the intended purpose.

– And if two models are both good enough, 
we still want to know which is better.

• Therefore, data is divided (at least) into 
two parts: Training and Test



Regression Choices

• Decision #1: to use a regression model

• Decision #2: to choose the form of the regression function.
– For one independent variable, the regression 

function is a curve.
– For two variables it’s a surface.
– For three variables it’s called a “hypersurface”.
– In general, it’s just called the “regression function”. 

• Decision #3: to chose the family of regression functions.
• Suppose there’s one independent variable.
• We know the regression function is a curve.
• But we still don’t have “parameters” to learn until we 

decide on the family of curves.
– Family=Lines: 2 parameters
– Family=Parabolas: 3 parameters
– Family=Cubics: 4 parameters
– N-th degree polynomials: N+1 parameters.



Other Families of Curves

• Regression curves need not be polynomials.

• Could be a cosine wave, which has 4 parameters.
𝛼 + 𝛽cos(𝛾𝑥 + 𝜃)

– 2𝛽 is the amplitude, 2π𝛾 is the period, 𝛼 and 𝜃 are vertical and horizontal shifts.

• Could be exponential, logarithmic, rational, radical, there are many 
families of curves.

• Could also be any combination of the above, for example a linear 
function plus a trig function

𝑎𝑥 + 𝑏 + cos(𝑐𝑥2)



Degenerate Curves

• Consider the general formula for a 2nd 
degree polynomial:

𝑎𝑥2 + bx + c

• A straight line is covered by this, by 
setting 𝑎 = 0.

– A straight line is called a 
“degenerate” parabola.

• Likewise, any linear or quadratic 
function is covered by the general 
formula for a cubic:

𝑎𝑥3 + 𝑏𝑥2 + cx + d



Polynomial Degree

• Based on the previous slide, why do we have to 
decide whether the form of the model should be 
linear, or quadratic, or cubic, or etc.?

• Why not make the form of the model some high 
degree polynomial, since that covers all these 
cases?

• Several reasons.

• First off, a degree n polynomial requires at least 
n+1 points to fit to it.
– We cannot fit a line to one point, a parabola 

to two points, etc.
– So, the degree will be limited by the number 

of data points.

• But there’s a much bigger reason, something 
called “overfitting”.



Overfitting

• Suppose there are n data points in 
the training data.

• Then a degree n-1 polynomial can 
be found that passes through all of 
them precisely.

• Such a curve would have a “least-
squares error” equal to zero, so it 
would give the best possible fit.

• But it might still be unlikely to 
explain future data very well.



Overfitting 
Example

Suppose the data look like this.

The true model of the data is a 
straight line.

Assume Mother Nature generated 
the model according to the straight-
line (𝑎𝑥 + 𝑏), with some wiggle (ℰ).



Overfitting 
Example

A straight line fits the data well.

As it should, given it’s the true 
model.



Overfitting 
Example

Suppose we decide to train a model 
with 10th degree polynomials.

We assume (erroneously) that if a 
straight line is the best fit then it 
will make the higher degree 
coefficients zero in order to fit a 
straight line.

But the problem is, a 10th degree 
polynomial can be made to go 
through all six points precisely.

(even with 5th degree it could be 
made to go through them all)



Overfitting 
Example
Since the true model of the 
data is linear, the 10th degree 
curve will give very bad future 
predictions for many values of 
𝑥.

In language to be developed 
soon, we say the 10th degree 
model has low (in fact zero) “in 
sample” error but high “out of 
sample” error.

The straight line on the other 
hand has low (but non-zero) “in 
sample” error but also “low out 
of sample” error.

The 10th degree model suffers 
from overfitting.

• We train models to have low in sample error.

• We evaluate their performance by their out 

of sample error. 

• It is the out of sample error that must be low, 

or we do not have a good model.



The Hypothesis Set
• From the previous slides it should be clear that we start with a set of “candidate” functions.

– For example, all linear functions, or all quadratics, or possibly all polynomials or all continuous functions.

• Each candidate is a “machine,” and our goal is to chose one.  A best performer.

• These functions are also called “hypotheses” because each is potentially the true 
relationship between the independent and dependent variables.

• The set of candidate functions (e.g., all linear) is therefore called the “hypothesis set” or the 
“hypothesis space”.



The Hypothesis Set

• The bigger the hypothesis set, the more likely it is to contain the true function, 
but the more likely it is to overfit the training data.

– Therein lies one of the fundamental tradeoffs in machine learning.



More Terminology

The independent variables are also called “features” 
or “input variables”

Values of the dependent variable are also called 
“labels”.

So, in this language, training data is data where the 
values of the features are given and where the 
corresponding labels are also known.



Classification
features are continuous variables (Gene A, Gene B)

labels are categorical variables (blue, green)



Regression
features is continuous (height)
labels also continuous (weight)



This diagram 
describes the 
components of a 
machine learning 
procedure.

We will go 
through this 
piece-by-piece.

Anatomy of a Machine 
Learning Procedure



The Unknown Distribution



Unknown 
Distribution

• The relationship between the 
features and labels is rarely 
deterministic.

• For example, correctly deriving 
the gender of a person using 
only their height is not 
possible.

• However, there is a probability 
that a given person has a 
certain gender given their 
height.



Unknown Distribution

• If 𝑥 are the feature values and 𝑦 are 
the labels, then the unknown (joint) 
distribution 𝑃(𝑥, 𝑦) captures:

– The conditional probability 
distribution of the feature values 
given the labels

– The conditional probability 
distribution of the labels given 
feature values

• The unknown distribution is part of 
reality and usually, we have no control 
over it



The 
Hypothesis 
Set



The 
Hypothesis 

Set

• We are searching for a function 
that assigns labels to feature values

𝑓: 𝑋 → 𝑌

• The Hypothesis set ℋ is the set of 
all candidate functions which we 
consider in our search

– We are generally free to choose 
our hypothesis set

– For example, all linear 
functions, or all quadratics, etc.



The Loss Function



The Loss Function
• How can we compare two hypotheses to decide 

which one is better?
• What does better or best even mean?

–  For this we need an error measure to measure how 
well a hypothesis performs.

– An error measure is almost always derived from a 
loss function

• A loss function measures how close a prediction 
gets to the truth for a single subject.

• A loss function takes three values as inputs:

• The loss value 𝐿(𝑥, ො𝑦, 𝑦) quantifies how far the 
true value of the label is from the predicted 
value ො𝑦 for a single subject.



Examples 
of Loss 

Functions



The Loss Function

• The loss function is one of the choices we must make.

• The choice of a loss function affects the ranking of 
hypotheses and hence the outcome of the learning 
process.

• Loss functions are often chosen because they have nice 
mathematical properties such as continuity or 
differentiability.

• This choice can be difficult, so in many cases people 
stick with defaults such as 0–1 or quadratic loss.



Symmetry 
of the Loss 
Function

• The 0-1 loss function is symmetric in 
the sense that false positives are 
penalized by the same amount as 
false negatives.

• This might not realistic, for example 
if we are trying to test for a 
dangerous highly contagious 
disease.

– In this case, false negatives have 
much more dire consequences than 
false positives.



Alternative to the 0-1 Loss Function

This loss function accounts for the asymmetry between false-
positives and false-negatives.



The Error Measure



The out-of-sample Error Measure

• Once the choice of the loss 
function has been made, we define 
the (out-of-sample) error measure 
as the expected loss, with respect 
to the unknown true distribution.

• It depends on the hypothesis.
• And the lower it is, the better the 

hypothesis.

• Therefore, it is used to compare 
the performance of different 
hypotheses, to choose a good one.

• Since the true distribution is 
unknown, we cannot calculate it 
exactly, but we estimate it using 
the “test” data.



The Error Measure Example

Example of the error measure for the 0-1 loss function.



The Training Data



The Training Data
• To do supervised learning, we need data which contain input 

values and the corresponding labels.

• Like a bunch of question and answer pairs

The inputs are Gene 1 and the labels 

are Gene 2

The inputs are Gene 1 and Gene 2 

and the labels are the categories: 

affected/not affected

REGRESSION CLASSIFICATION



• Regression

• Classification



The 
Learning 

Algorithm



The Learning 
Algorithm

• S = { 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)} is training 
data.

– Also called a “sample”.



Example of an Algorithm
- least squares -

• The Least Squares procedure of fitting a line 
to points in simple linear regression is the 
learning algorithm.

• Any method used to fit the regression 
function to training data is a learning 
algorithm.

• For classification, any method that partitions 
the plane into two parts corresponding to 
the two categories is an algorithm.

• Some algorithms are better than others.



In a 
Nutshell



Training vs. Testing

• What was described above is about training the 
model.

• But once trained, we need to evaluate how well it 
performs.

– And perhaps modify things if performance is less 
than required.

• Therefore, data (where the truth is known) must be 
divided into at least two parts:

– Training data – to train the model

– Test data – to evaluate the model



Training vs. 
Validation vs. Testing

• If the test data indicates performance is less than 
desired, then the model may be modified further.

• At this point, yet more test data is required to 
evaluate performance, because of the following:

• MAXIM:  Final performance cannot be evaluated 
on data which was used to inform the model in 
any way.

• Once the test data has been used to further 
modify the model, it is no longer test data, it has 
become training data.
– Which is often rebranded as “Validation” data.

• Validation data is not data which was used for 
initial training, nor data which was used for final 
evaluation of performance.
– It is data which is used for further refinement after 

initial training. 



In-Sample and Out-
of-Sample Error

• We now turn to matters of evaluating the performance of the model.

• With training or test data, since we know the truth, we can put a metric on how 
close the model gets to the truth.
– Which could be a distance (for prediction), or a 0-1 loss (for classification).

• IN-SAMPLE: If we apply the error metric to training data, then we call it the “In-
Sample Error”

• OUT-OF-SAMPLE: If we apply the error metric to the test data, then we are 
approximating the “Out-of-Sample Error” which is defined to be the true error 
based on the true (unknown) distributions.
– Since the distributions are unknown, we can only approximate the true (out-of-sample) 

error, by using test data.



Empirical Risk 
Minimization

• The hypothesis set must be big enough to 
either contain the true function or at least 
one close to it.
– But we must keep ℋ from being too big 

(because of overfitting).

• Here ℋ is the hypotheses set.
• 𝑓∗ is the true (unknown) hypothesis by which 

Mother Nature has generated the data.
• ℎ∗ is the hypothesis in ℋ that is closest to 𝑓∗.

– With ℋ given, we can’t do better than 
ℎ∗.

• ෠ℎ is the hypothesis in ℋ found by the 
(machine) learning algorithm.
– ෠ℎ is not necessarily ℎ∗, because there’s no 

guarantee the algorithm finds the best 
hypothesis in ℋ.



Empirical Risk 
Minimization

• The distance from ෠ℎ to 𝑓∗ is the total 
error.

• The total error decomposes into two 
parts:

1. The distance from ෠ℎ to ℎ∗(called the 
estimation error)

2. And the distance from ℎ∗ to 𝑓∗ called 
the approximation error. 



Trade-Off

• We can get the approximation 
error down to zero by expanding 
the hypothesis set.

• At the extreme it could contain all 
possible functions. 

• That would guarantee 𝑓∗ is in the 
set and therefore 𝑓∗ = ℎ∗ 

• But the estimation error increases 
because of overfitting.
– In other words, we can get the in-

sample error low, while the out-of-
sample error remains high.



Bayes Risk

• Even if we could find 𝑓∗, using it for 
classification only reduces the error to be as 
low as possible.

• But it cannot lower it to zero, unless there 
happens to be a deterministic relationship 
between the independent and dependent 
variables.

• For example, height can only predict weight 
so well.

• In other words, 𝐸out 𝑓∗ > 0.

• 𝐸out 𝑓∗  is the inherent error that cannot be 
removed.

• It is called the “Bayes risk” and is denoted 
𝐸out

∗ .



The True (Total) 
Error

• The true total error of a model is 
composed of three parts.

1. The Bayes risk, which is the 
minimal possible error.

2. The approximation error, which 
comes from ℋ being too small 
to contain the true function 𝑓∗.

3. The estimation error, which 
comes from the learning 
algorithm not finding the best 
possible function in ℋ.



The Learning Inequality – first thing to notice

• This inequality is explained on the next slides.  

• But the first thing to notice is the right-hand side has |ℋ|, which is the size of the 
hypothesis set.

• For the examples we’ve been looking at, ℋ = ∞ (there are infinitely many lines in the 
plane, for example) and this makes the inequality uninteresting.
– Everything is less or equal to infinity.

• There is a version of the Learning Inequality that works for infinite hypothesis set, but it 
involves some mathematical technicalities.

• We’re going to work with this finite version to avoid that math, because the main 
concept is the same, a trade-off between model complexity and size of the training data 
set.



The Learning Inequality – second thing to notice 

• The second thing to realize is that 𝐸in ℎ  is a random variable.  
– The in-sample error is a function of the training data, and training data is a random sample of 

data from a population.

• 𝐸out ℎ  on the other hand is not random, it’s the true error from using ℎ which is an 
expected value with respect to the true (unknown) distributions.  So 𝐸out ℎ  is just a 
fixed number.

• Because 𝐸in ℎ  is random, that’s why the left-hand side of the Learning Inequality is a 
probability.  It’s a bound on a probability.  Read it like this:

– The probability that 𝐸in ℎ − 𝐸out ℎ  is larger than 𝜀 is less than 2|ℋ|𝑒−2𝑛𝜀2



The Learning Inequality - explained

• We’re searching for ℎ ∈ ℋ which has 𝐸out ℎ  as close as possible to the best possible 
𝐸out 𝑓∗ .

– 𝐸out 𝑓∗  is what we’re also calling “the Bayes Risk”, the inherent minimal possible error.

– Once we find such an ℎ, we denote it ෠ℎ.

• The main things that causes 𝐸out ℎ  and 𝐸out 𝑓∗  to be different is:

• ℋ is too small – so large approximation error (model too simple).

• ℋ is too big – overfitting (model too complex).

– Overfitting causes 𝐸out ℎ  to be larger than 𝐸in ℎ .

– So, we want |𝐸in ℎ − 𝐸out ℎ | to be small.

• To deal with this, we have a powerful theorem, called “The Learning Inequality” which puts a 
bound on |𝐸in ℎ − 𝐸out ℎ |.



The Learning Inequality - interpretation

• If the left-hand side is small, 
then overfitting is under 
control.

• And this inequality tells us 
we can get the left-hand 
side small by making the 
right-hand side small.

• And the right-hand side 
depends on only two things:

1. The right-hand side gets smaller as n gets bigger.
• More replicates, less chance of overfitting.

2. And it gets bigger as ℋ gets bigger.
• Bigger ℋ, more chance of overfitting



Empirical 
Risk 

Minimization
- in a nutshell -



Empirical Risk 
Minimization

• ℋ3 is too small.
– Large approximation error.

• ℋ1 is too big.
– Danger of overfitting, large 

estimation error.

• ℋ2 is just right.



Empirical Risk 
Minimization Example

• Supposed the true model of some 
data is given by the following cubic.

y = 1 − 10𝑥 + 35𝑥2 − 25𝑥3 + ℰ 

• 𝑥 is the independent variable

• y is the dependent variable.

• ℰ is the non-deterministic part.

– The Bayes risk of the system.



The True Model is the 
Optimal Predictor

• This is the regression model that 
generated the data:

y = 1 − 10𝑥 + 35𝑥2 − 25𝑥3 + ℰ 

• The optimal predictor is therefore:

𝑓∗(𝑥) = 1 − 10𝑥 + 35𝑥2 − 25𝑥3 

• This is (usually) known only to God.  We’re 
specifying it here for illustrative purposes.

• The job of machine learning is to recover 𝑓∗ (or 
as close as possible) from the data itself.



The 
Hypothesis 

Set

• We’ll consider different 
hypothesis sets, to see how some 
are too small, some too big, and 
some are just right in the sweet 
spot.

• Let ℋ𝑝 be the set of polynomials 
of degree 𝑝.

ℋ0 ⊆ ℋ1 ⊆ ℋ2 ⊆ ℋ3 ⊆ ⋯

• ℋ0 are  horizontal lines.
• ℋ1 are straight lines.
• ℋ2 are parabolas.
• Etc.



The best possible predictors
from each class

Since we’re playing God in this example, 
we can calculate exactly what ℎ∗ is.

Recall ℎ∗ is the best predictor in ℋ.

We’re not using a learning algorithm to 
find ℎ∗.

The learning algorithm will find ෠ℎ which 
it hopes is close to ℎ∗.

ℎ∗ is shown in the figure for ℋ0 through 
ℋ3 with respect to the quadratic loss 
function. 



Minimal Risk
Next, for each ℋ𝑝 we find the 
function ෠ℎ that minimizes the 
error (the expected loss), with 
respect to the quadratic loss 
function.

In other words, ෠ℎ is the function 
that minimizes the in-sample 
error.

In other words, ෠ℎ is the function 
that minimizes the error with 
respect to the training data (and 
the quadratic loss function).

Keep in mind, as 𝑝 grows, 
overfitting gets worse and 
consequently, the distance from 
෠ℎ to ℎ∗ increases.



The Data and 
the True Model

These points represent our 
subjects.

This is the training data.

The real model is a cubic and 
we’re going to fit a 0-degree 
polynomial to it, and then a 1st 
degree, then a 2nd, etc.

Including degrees that are higher 
than the true model: 4th, 5th, 6th, 
etc. to see how overfitting gets 
worse as ℋ𝑝 grows.



ℋ0
The best horizontal line that fits the training data

෠ℎ



ℋ1
The best straight line that fits the training data

෠ℎ



ℋ2
The best parabola that fits the training data

෠ℎ



ℋ3
The best cubic that fits the training data

෠ℎ



ℋ4
The best quartic that fits the training data

෠ℎ



ℋ5
The best quintic that fits the training data

෠ℎ



ℋ6
The best 6th degree polynomial that fits the training data

෠ℎ



ℋ7
The best 7th degree polynomial that fits the training data

෠ℎ



ℋ8
The best 8th degree polynomial that fits the training data

This is the first time we start to see evidence of overfitting.

෠ℎ



ℋ9 Overfitting is already a serious issue at degree 9, which 
is still far below the number of data points.

This shows the overfitting issue cannot be taken lightly 
even if when there is a fair amount of data.

The best 9th degree 
polynomial that fits the 
training data

෠ℎ



Continuing

• We’re going to take this all 
the way to 27th degree 
polynomials.

• But we’re going to stop 
showing the best fit ෠ℎ. 

• Instead, we will graph the 
various out-of-sample errors 
as functions of the degree.

• We’ll start with 𝐸out
෠ℎ .



𝐸out
෠ℎ

This is the total error on the 
final chosen best 
performer, for each 
hypothesis set ℋ𝑝 

𝑝 is the horizontal axis

• The error is very high for 
𝑝 = 0, 1 and 2.

• It hits its minimum at 𝑝 =
3 since that’s the true 
model.

• Then it raises from there, 
because of overfitting.

• It bottoms out at 0.25 
which is the Bayes 
(minimal) possible error.



Approximation, 
Estimation and Bayes 

Errors

The total error is the sum of 
the three components. 

• The blue dashed line is the 
Bayes risk, which does not 
depend on ℋ.

• The orange line is the 
estimation error, which 
starts low and climbs due 
to overfitting.

• The green line is the 
approximation, which 
drops to zero when 𝑝 = 3 
and ℋ contains the true 
model.



Conclusions

• Fitting training data well means 𝐸in(ℎ) ≈ 0.

– ≈ 𝟎  means “is close to zero”.

– That is different from making good predictions about new data, 
which means 𝐸out(ℎ) ≈ 0.

• Complex hypotheses sets lead to overfitting the test data resulting 
in 𝐸in(ℎ) ≈ 0 while 𝐸out(ℎ) is not close to zero and may be quite 
large.

• Overly simple hypotheses sets cannot fit the data well, meaning 
𝐸in(ℎ) is large for all ℎ ∈ ℋ.



Unsupervised 
Methods

Unsupervised 
Clustering plays a 
big role in biology 
and bioinformatics.

NEW TOPIC



Centroids

Consider plotting 
several points in the 
plane.

Call them “centroids”



Centroids

Every additional 
point in the plane is 
closest to one of 
the centroids.



Centroids

Calculate the three distances 
𝑑1, 𝑑2, 𝑑3.

For most points, one of the 
distances will be smaller than 
the other two.



Centroids

Suppose 𝑑1 is the smallest.

  𝑑1 < 𝑑2 and 𝑑1 < 𝑑3.

Then color the point red.



Centroids

Therefore, three points 
partition the plane into 
three regions.

The black lines 
represent the ties.

In general, 𝑛 ‘centroids’ 
partition the plane into 
𝑛 regions.



Means in the 
Plane

• What do we mean by “the mean” of a 
bunch of points in the plane?

• Points have two coordinates.

• The x-coordinate of the mean is the 
mean of their respective x-coordinates.

• The y-coordinate of the mean is the 
mean of their respective y-coordinates.



Unsupervised 
Clustering

• There appear to be four 
clusters here.

• The goal is to make an 
algorithm that can figure 
that out and identify the 
members of each cluster.



Supervised 
Clustering

If we knew the clustering 
ahead of time, then we 
could make centroids be 
the means of each of the 
clusters.

That would be 
“supervised clustering”



K-Means Clustering
Unsupervised Clustering

K-Means clustering 
separates the points into K 
clusters according to some 
optimization criterion.

Assume for now that K, the 
number of clusters, is 
known – we’ll see how to 
determine k later.



Learning vs. 
Optimization

• When we have training data, data where we 
know the truth, the goal is usually “learning”.

– We call that “supervised learning”.

• When we do not know the truth, such as in 
clustering, we don’t “learn” instead we 
“optimize”.

– And we call it “unsupervised learning”.

– We establish a metric that measures quality 
of something (usually clusters).

– The metric can then be optimized (which 
means we search for values of parameters 
that make the metric as big, or as small, as 
possible, depending on which is better).



K-Means 
Clustering

Start by randomly 
assigning locations 
to four centroids.



K-Means 
Clustering

Assign the data points to 
the clusters.

Color each point by which 
centroid it is closest to.



K-Means 
Clustering

Move the four centroids to 
be at the means of the 
current clusters.



K-Means 
Clustering

Reassign points to clusters 
based on the new locations of 
the centroids.

You see this is an iterative 
process that improves at each 
iteration.



K-Means 
Clustering

Move the centroids again, to the 
means of the new clusters.

In just two iterations it’s already 
close to optimal.

Optimal here means nothing 
changes upon subsequent 
iterations.



K-Means 
Clustering

Reassign points to 
clusters based on the 
new centroid positions.



K-Means 
Clustering

Looks right.

Further iterations might 
change the partition of the 
plane slightly but will no 
longer change the clusters.

Time to stop.



The Big Picture
Most unsupervised machine learning 
methods are based on iterative 
procedures such as this.

The computer starts by knowing nothing, 
it starts by taking a random guess at the 
parameters.

Here, the centroids are what’s 
guessed at.

If the updating rules are sensible, the 
estimates of the parameters improve with 
each iteration.

I.e., the machine learns



Objective Functions
• How do we know if the parameter 

updating procedure is sensible?

• We use an objective function that the 
algorithm aims to minimize

• In the case of k–means clustering we 
have, for clusters 𝐶1, … , 𝐶𝐾

𝑓 𝑚1, … , 𝑚𝑘 = ෍

𝑗=1

𝑘

෍

𝑥𝑖∈𝐶𝑗

𝑑(𝑥𝑖 , 𝑚𝑗)



The Big 
Picture



Evaluation 
of Results

This raises the issue of evaluation of results

Hence, we don’t know if we are getting the “best” 
possible clustering

However, they are almost never guaranteed to find 
the global minimum of the objective function

Machine learning algorithms try to decrease the 
objective function in each step



Evaluation of Results

• Use statistical measures of purity and 
homogeneity of clusters.
– Such as the Silhouette method (next 

slide)

• Compare with external sources of truth, such as 
GO annotations.
– Clustering that give the best enrichment p-values 

is validating.

• Bootstrap — randomly resample from the data 
set and then rerun the clustering

• To get a handle on how variable the results are 
as we swap one training data set with another.



Silhouette 
Scores



Silhouette 
Scores



Our 
Clustering

The clustering from 

the k-means 

algorithm, with k=4.



Silhouette Scores Each of the 150 data points 
has its own silhouette score.

Average 
Silhouette 
Score = 0.68



Bad 
Clustering

The clustering from 

four randomly 

placed centroids.



Silhouette Scores for Bad 
Clustering

Lower silhouette scores 
indicate worse clustering.

Average 
Silhouette 
Score = 0.32



Hyperparameters

In supervised learning we must usually specify the 
form of a model before we have parameters to 
train.

Unsupervised machine learning algorithms usually 
also require specifying preliminary properties, often 
themselves parameters. 

These are called “hyperparameters”

For example, the K to use in K-means 
clustering.

Hyperparameters must be specified before the 
optimization loop can be initiated.

There are many tuning procedures used to 
determine optimal values of hyperparameters



K-Means 
Clustering 
Example

• In the case of k–means clustering, the 
number of clusters k is a 
hyperparameter.

• And the objective function is

𝑓 𝑚1, … , 𝑚𝑘 = ෍

𝑗=1

𝑘

෍

𝑥𝑖∈𝐶𝑗

𝑑(𝑥𝑖 , 𝑚𝑗)

• The objective function is used after k is 
determined to determine the centroids.

• It gives a meaningful comparison 
between different clusterings, for a 
fixed k.

• But it does not give meaningful 
comparisons between different values 
of k.



Determining K

• Since objective functions cannot be used 
to compare between different values K, 
they cannot be used to determine the 
best value of k.

• If we increase the number of clusters, 
the objective function always decreases.
– If we increase the number of clusters to be 

equal to the number of data points, then we 
can drive the objective function all the way 
down to zero.

• The name for this problem is  
“overfitting”.
– Overfitting comes up also in unsupervised 

machine learning.



Overfitting

• Overfitting can start 
to happen with k 
even as small as six.

• The objective 
function is smaller 
than with k=5 but 
that does not mean 
it’s better.



Average 
Silhouette 

Scores

The average silhouette 
score does allow for a 
meaningful comparison 
between different 
values of k.

Thus, allowing for k to 
also be learned from the 
data.


	Slide 1: Introduction to Bioinformatics
	Slide 2: Supervised Learning
	Slide 3: Unsupervised Learning
	Slide 4: Unsupervised vs. Supervised
	Slide 5: What is a Machine?
	Slide 6: What is Learning?
	Slide 7: The Learning Step
	Slide 8: The Form of the Model
	Slide 9: Two Types of Problems
	Slide 10: Types of Models
	Slide 11: Decision Trees
	Slide 12: Considerations
	Slide 13: Neural Nets
	Slide 14: Why Now?
	Slide 15: Interpretation
	Slide 16: Natural Language - for example -
	Slide 17: A Time and a Place
	Slide 18: Our Goals
	Slide 19: Types of Regression Models
	Slide 20: What is ANOVA?
	Slide 21: The Machine Learning Process
	Slide 22: Regression Choices
	Slide 23: Other Families of Curves
	Slide 24: Degenerate Curves
	Slide 25: Polynomial Degree
	Slide 26: Overfitting
	Slide 27: Overfitting Example
	Slide 28: Overfitting Example
	Slide 29: Overfitting Example
	Slide 30: Overfitting Example
	Slide 31: The Hypothesis Set
	Slide 32: The Hypothesis Set
	Slide 33: More Terminology
	Slide 34: Classification features are continuous variables (Gene A, Gene B) labels are categorical variables (blue, green)
	Slide 35: Regression features is continuous (height) labels also continuous (weight)
	Slide 36: Anatomy of a Machine Learning Procedure
	Slide 37: The Unknown Distribution
	Slide 38: Unknown Distribution
	Slide 39: Unknown Distribution
	Slide 40: The Hypothesis Set
	Slide 41: The Hypothesis Set
	Slide 42: The Loss Function
	Slide 43: The Loss Function
	Slide 44: Examples of Loss Functions
	Slide 45: The Loss Function
	Slide 46: Symmetry of the Loss Function
	Slide 47: Alternative to the 0-1 Loss Function
	Slide 48: The Error Measure
	Slide 49: The out-of-sample Error Measure
	Slide 50: The Error Measure Example
	Slide 51: The Training Data
	Slide 52: The Training Data
	Slide 53
	Slide 54: The Learning Algorithm
	Slide 55: The Learning Algorithm
	Slide 56: Example of an Algorithm - least squares -
	Slide 57: In a Nutshell
	Slide 58: Training vs. Testing
	Slide 59: Training vs. Validation vs. Testing
	Slide 60: In-Sample and Out-of-Sample Error
	Slide 61: Empirical Risk Minimization
	Slide 62: Empirical Risk Minimization
	Slide 63: Trade-Off
	Slide 64: Bayes Risk
	Slide 65: The True (Total) Error
	Slide 66: The Learning Inequality – first thing to notice
	Slide 67: The Learning Inequality – second thing to notice 
	Slide 68: The Learning Inequality - explained
	Slide 69: The Learning Inequality - interpretation
	Slide 70: Empirical Risk Minimization - in a nutshell -
	Slide 71: Empirical Risk Minimization
	Slide 72: Empirical Risk Minimization Example
	Slide 73: The True Model is the Optimal Predictor
	Slide 74: The Hypothesis Set
	Slide 75: The best possible predictors from each class
	Slide 76: Minimal Risk
	Slide 77: The Data and the True Model
	Slide 78: script cap H sub 0
	Slide 79: script cap H sub 1
	Slide 80: script cap H sub 2
	Slide 81: script cap H sub 3
	Slide 82: script cap H sub 4
	Slide 83: script cap H sub 5
	Slide 84: script cap H sub 6
	Slide 85: script cap H sub 7
	Slide 86: script cap H sub 8
	Slide 87: script cap H sub 9
	Slide 88: Continuing
	Slide 89: cap E sub out , open paren h hat , , close paren 
	Slide 90: Approximation, Estimation and Bayes Errors
	Slide 91: Conclusions
	Slide 92: Unsupervised Methods
	Slide 93: Centroids
	Slide 94: Centroids
	Slide 95: Centroids
	Slide 96: Centroids
	Slide 97: Centroids
	Slide 98: Means in the Plane
	Slide 99: Unsupervised Clustering
	Slide 100: Supervised Clustering
	Slide 101: K-Means Clustering Unsupervised Clustering
	Slide 102: Learning vs. Optimization
	Slide 103: K-Means Clustering
	Slide 104: K-Means Clustering
	Slide 105: K-Means Clustering
	Slide 106: K-Means Clustering
	Slide 107: K-Means Clustering
	Slide 108: K-Means Clustering
	Slide 109: K-Means Clustering
	Slide 110: The Big Picture
	Slide 111: Objective Functions
	Slide 112: The Big Picture
	Slide 113: Evaluation of Results
	Slide 114: Evaluation of Results
	Slide 115: Silhouette Scores
	Slide 116: Silhouette Scores
	Slide 117: Our Clustering
	Slide 118: Silhouette Scores
	Slide 119: Bad Clustering
	Slide 120: Silhouette Scores for Bad Clustering
	Slide 121: Hyperparameters
	Slide 122: K-Means Clustering Example
	Slide 123: Determining K
	Slide 124: Overfitting
	Slide 125: Average Silhouette Scores

