
Introduction to
Bioinformatics

Gregory R. Grant
Genetics Department
ggrant@pennmedicine.upenn.edu

ITMAT Bioinformatics Laboratory

University of Pennsylvania

Lecturer

Gregory R. Grant

Lecture Four
UNIX for processing biological data

Teaching Assistants

CIS4536 Fall 2023

mailto:ggrant@pennmedicine.upenn.edu

File Manipulation

• What do amateurs do?
– Windows Explorer

• Dragging and dropping and right
clicking is convenient

• But time-consuming operations
cannot be automated.

– Microsoft Word
• An ugly monster.
• Half baked features hacked on top of

other half-baked features.
• Chokes and dies on large files.

– Microsoft Excel
• Limited number of rows.
• Without learning to program, you can

only do what they’ve built in, you
cannot follow your heart’s desire.

• We are going to focus on the manipulation and management of
data files.

What do the Pros Do?

• File system control with the UNIX Command
Line

• File editing with Emacs and “Scripting”

– Perl, Python, Ruby

• File manipulation with code

– Perl, Python, Ruby, Java, C/C++

Our Goals

• To gain a working knowledge of Unix and its role
in bioinformatics.

• We have given everybody accounts on a Unix
machine where we will work and learn.

• We will inspect various “analysis pipelines” this
semester that are implemented in a Unix
environment.

– This material will help you know what you’re looking
at when we do that.

• And you will perform analysis tasks of your own
in Unix.

The Old Days

• Fifty years ago, when you
turned on a computer, all you
would see is something like
this.

– Just a text prompt.

– There was no
mouse, no
windows, no
images.

– You interact with
it entirely by
typing text
commands in
text and hitting
enter.

Example Command
• Here the command ‘date’ was entered.

– It returns the date and exact time.

• Followed by the prompt, ready for the next command.

Text in / Text out

• These text commands return output (as text) to
the screen.

• They can also manipulate files as we will see.

Case Sensitivity
• In most places Unix is case sensitive.

– You can have two files named ‘dog’ and ‘Dog’ and Unix will keep
them straight.

• The notable exception is Mac which uses a case-insensitive
version of Unix.

Interfaces
• Interfaces have changed dramatically.

– From text only to a world of graphics and pointing devices.

• But under the hood, computers are still the same.

– They’re organized as a hierarchical file system.

• The difference is simply how we access and manipulate
those files.

The File System
• Every computer has a "File System"

which is how the files are organized
on the computer.

• File systems contain files and
directories (aka 'folders') organized
like a tree.

• Directories contain files and
subdirectories, which, in turn, can
contain their own files and
subdirectories, creating a hierarchy
that can go to any depth.

• The top-level directory is called the
root directory, it is the only
directory which is not contained in
any other directory.

Navigating the File System

• On Windows you
navigate this tree using
Windows Explorer.

• On a Mac you navigate it
using Finder.

• On UNIX, you navigate it
using text commands, as
we will see.

So, what exactly is an
Operating System?

• The operating system is what you interact with when you use a computer.

– The operating system allows you to interact with the file system, to run programs
and manage files and users.

• The most popular laptop/desktop operating systems are Mac and Windows.

– These operating systems are visual and intuitive.

– In addition to the keyboard, you can use mice, touchpads, touchscreens, pointers
and other input devices.

• Another OS you’ve surely heard of is called “Android”

– Afterall, your phone is just another computer.

So, what exactly is an
Operating System?

• UNIX is just another option.

– It is not graphic - it is entirely text-based.
• You interact solely with the keyboard.

–Unix is extremely stable; it never crashes.
• That’s why the world runs on Unix.

Many Flavors of
Unix

• UNIX is to some extent proprietary.
• But many free alternatives have been

developed.
– All with essentially the same basic

functionality as Unix.
– You may have heard of Linux.
– MAC OS is another one.

• Linux itself comes in many variants
– Called Linux Distributions.
– You’ll hear names like Ubuntu, Debian, SUSE, Fedora, etc.
– These are all just flavors of Linux which itself is a version of Unix.

• Operating Systems are like cars; everybody seems to drive a different looking one. But we all
get from point A to point B.

Layers

• Often one OS is layered on top of
another.
– You interact with the one on top, the one underneath is hidden.

– The lowest level operating system is called the “native” OS.
• Informally “the OS under the hood”.

– But (importantly) there’s still only one file system, which both OS’s see
simultaneously.

• For example, the MAC OS is written on top of UNIX.
– MAC has UNIX under the hood.

– It didn’t used to be that way, but Apple went Unix around 2001.

• Windows used to be written on top of another text-based
operating system called DOS.
– But Windows itself has been rearchitected to be the native OS, no more

layering on top of DOS.

Emulation

• There are also programs in one
OS that can ‘emulate’ another
OS.

• For example, here we see
Android emulated on Windows.

– You do this if you want to
run an Android program on
your laptop.

Let’s look at some more examples.

Android emulated on Windows

UNIX is Under the Hood of your MAC
• On a Mac, UNIX is the native OS, typically hidden from the user.

– Mac OS is written on top of Unix.

• But you can peek under the hood by opening a terminal.

Mac Under the Hood
• You can do all the same things in this terminal as you can do using the Finder

app.
– Plus a whole lot more.

– You just need to know the equivalent text commands, and soon you will.

Windows Emulator on Mac

• Here we see Windows emulated on top of the MAC OS.
– The whole Windows OS is running in that window.

• In that window you can use Window Explorer to manipulate files.
– But they’re still the same files as you see using Mac’s Finder App.

UNIX Emulation in Windows
• There are multiple options to emulate UNIX in Windows.

– WSL (built into Windows) and Cygwin (3rd party) are the two main ways to do it.

• You do not need to emulate Unix on Mac because it already has Unix under the
hood.

• The Unix window you see here is on top of Windows.

Four Layers
• Here we see Unix emulated in Windows, which itself is

emulated in Mac, which itself is written on top of Unix.

Getting UNIX on Your Computer

• If you are on a Mac then you already have it.

– Since Mac is built on top of Unix, just open the
hood and there it is.

– To open the hood, simply fire up the 'Terminal'
application.

• If you have Windows, there are instructions to
install Unix here.
– But you don’t need to do that for this class

• You will be provided with a Unix account special for this class that
you can access through a web browser.

– https://www.onmsft.com/how-to/install-ubuntu-on-windows-10-or-windows-11

Remote Access
• Unix is also used to connect remotely to other machines.

• This may look the same as a previous slide, but in this case the program you see running in
the window is not a Unix emulator controlling my computer.

• Instead, it’s a program that connects to a remote machine that could be anywhere in the
world and in this window, I control that computer, not mine.

– Notice the program is called “SecureCRT” for encrypted connections to remote (unix) machines.

SSH Client
• The program that allows you to connect to a machine remotely is

typically called an SSH Client.

• It’s a program that connects to a remote Unix system and allows
you to access and control the computer as if you were there.

The Web is mostly UNIX
• Most of the time you fetch a web page you are

communicating with a Unix machine.
– Unix machines behind web sites are called “Servers”

• Let’s look at a simple web address (aka a URL)
www.cnn.com/2022/08/04/world/mammoth-fossils-early-humans-scn/index.html

• The first part www.cnn.com is the base of the
address

www.cnn.com/2022/08/04/world/mammoth-fossils-early-humans-scn/index.html

– It points to a particular directory on a particular Unix
machine.

• The next part is a path of subdirectories,
separated by slashes:

www.cnn.com/2022/08/04/world/mammoth-fossils-early-humans-scn/index.html

• And the last part is a file in the last
directory

www.cnn.com/2022/08/04/world/mammoth-fossils-early-humans-scn/index.html

– This file tells the web browser how to render the
page.

Clarification: URLs

• We just examined an old-school basic web
address for a static web page.

– And you’ll see plenty of addresses across the web
formatted like that.

• But they don’t all conform to that format.

– Some URL’s use hidden variables to direct you to
the right place, and some URL’s have explicit
variables specified.

– Anything that follows a ‘?’ in a URL is a variable.

Clarification: Non-Unix Servers

• Non-Unix servers do exist, you may
occasionally be fetching a web page from
a server running Windows or something
else.

• But for the most part, servers tend to be
Unix.

• You don’t need to own a powerful computer anymore;
you can simply rent one by the hour from Amazon.
– They don’t mail it to you, you connect to it remotely using an

SSH Client.

– These ephemeral machines are known collectively as The
Cloud.

• For this class we have rented a machine from Amazon
that everybody is going to have an account on.

• Installing an SSH Client can be tricky, you need to set
up private and public encryption keys.
– Fortunately, you won’t need to do that.

– We have set up a web browser interface instead.

The BIOL4536 Server
• We will all connect with the same web-based interface.

– This way we’ll all have the same experience.

• The server is here:
– https://biol4536.itmat.org

– You will receive a username and password by email.

https://biol4536.itmat.org/

Why is Unix Text Only?

• When they added slick things like pretty graphics and
pointing devices, they also added a whole lot of
baggage.

– Resulting in a whole lot of inefficiency.

• Particularly if you’re running a
computer remotely from
across the planet, sending all
the extra information to
render windows and graphics
is not practical.

• Text, on the other hand, can
be transmitted very fast and
efficiently.

Loss of Functionality
• With graphics we gain aesthetics and make operating

systems intuitive.
– But in the process, we sacrifice a lot of power and functionality that

you can only get with a text-based interface.

• For example, suppose you wanted to find all files on your
computer with names that start with a ‘A’, end in a ‘T’, and
do not have an ‘R’ anywhere in the middle.
– I’m not sure how you’d even being to do that with Windows

Explorer or Finder.

– Unix makes such things easy.

• Of course, most people never need to do esoteric searches
like that.
– Bioinformatics presents us with all sorts of problems we do not

normally encounter.

• UNIX makes many things easy.

A Word on Text Editors

• Many text editors, such as Microsoft Word, save
more than just what you type.

– They save additional formatting information such as
the font, whether it is italic, bold, the size the
margins, etc..

• Let’s create a simple text file in Word and see
what happens.

Microsoft Word Blank Document

Microsoft Word Small File

• We’ve typed the
character ‘X’
and nothing
else.

• A file can’t get
much smaller
than this.

File in Windows Explorer
• We see the file is 12KB in size.

• It’s exactly 11,981 bytes.

• One byte is 8 bits, so 95,848 bits to save ‘X’

Baggage

• The ASCII code encodes ‘X’ with one byte.

• So, what is Word doing with the other 11,980
bytes?

• Formatting information
– Font family, size, color, style, etc.

• Registration information
– Your name, address and more.

• Other?
– Who knows, much of it is inscrutable.

Text Files

• We’re going to
save the file
again, but this
time we’re
going to save it
in ‘text’ format.

File in Windows Explorer
• Finder now reports the file size as 1KB.
• That’s because 1KB is the smallest thing it will report.

– In reality, the file size on the disk is 3 bytes.
– One byte for the ‘X’ and it used two more bytes to indicate the

newline character at the end of the line.

Unix Display

• This is how Unix displays the two files.

• It gives the exact file size in bytes.

• If we created the text file in Unix, it would be
only 2 bytes, because Unix only uses 1 byte to
indicate a newline.

Text Editors

• To work with the command-line, or to program,or
to make web pages, or to manipulate files of
biological data, you must create and edit text files
without the baggage.
– On Windows, as we have seen, you can make Word

save files as plain text.
• Or you can use NotePad, WordPad, and EditPad.

– In UNIX all editors are text friendly editors. But the
best ones are not intuitive and have steep learning
curves.

• VI, Emacs are popular hardcore ones.

• Pico and Nano are basic intuitive ones.

Using the Command Line

• Almost everything you can do with Windows
Explorer (or Finder on Mac) you can do command-
line, plus a lot more.
– Not absolutely everything is better on the command-line

however, so an efficient person must have control of
both command-line and GUI access to their system.
• Windows Explorer (Windows) and Finder (Mac) are GUI's, which

stands for "Graphics User Interfaces".

• We can use the command-line to:
1. Create folders, move files around and rename things.
2. Run programs
3. Manipulate and search through text files
4. Connect remotely to other Unix machines.
Etc.

Connecting to the BIOL4536 Server

• The address is: https://biol4536.itmat.org

https://biol4536.itmat.org/

Log In

• You were (or will be) emailed credentials to
log in.

Jupyter
• This is a Jupyter interface.

– It allows us to embed a Unix interface in a web page.

– This is convenient for this class but is not typically how you would access
Unix. Typically, you’d install an SSH client.

• On the right is a panel from where you can launch several services.

Launch a Terminal

• Scroll down and click on Terminal.

Launch a Terminal

• This is what you should see.

The Prompt

• This is the so-called “prompt” where you enter your commands.

The Prompt

• The prompt shows your username, followed by an @
symbol, followed by an ID that identifies the session.
– That ID might change from time to time, you don’t need to

worry about that.

• We’ll explain later what the :~ is but basically it tells you
where you are in the file system.

• The default prompt is a bit ugly with that ID showing.
– But it is highly configurable, so we can change it and it does not

always look like this.

– We’re not going to get into prompt configuration, because time
is limited and it’s just a ‘look and feel’ issue.

Commands

• In UNIX you type a command at the prompt and
hit enter.
– We will also use the term ‘function’ as a synonym for

‘command’

• When you do this, you are essentially just running
a program.

• There are directories on your system where these
programs live.

• When you enter a command, the system looks in
these directories for the command.
– If it can’t find it, it will return “Command Not Found” or

something similar.

cal for example
• Type "cal" at the prompt and hit Enter.
• The "cal" function displays a nifty little calendar of the

current month.
– Followed by the prompt, ready for the next command.

Options
• Commands almost always

have options.

• Options are separated from
the command by spaces.

• For example, the following
will show the entire year:

➢ cal 2022
– cal is the command

– 2022 is the option to the
command

• We’ll see shortly how to get
a list of all options to any
command.

cal

• The cal command illustrates how everything in Unix is taken to the
geek level.

• You surely have your go-to calendar that you use daily.

• But does it display any year from the year 1 to the year 9999?

• Here is what November will look like in the year 7285.

cal

• This is September of the year 1752 when they had to skip
12 days.
– When the Julian Calendar was replaced by the Gregorian Calendar.

Options and Parameters

• This command returns the date of Easter in the
year 2172.
ncal is the command

-e is an option to ncal

2172 in this case is a parameter to the –e option.
• -e means ‘return the date of easter’ but it needs to know

what year, which is specified by the parameter.

• Some options take parameters, some do not.
– We will see soon how this is specified in Unix

documentation.

The File System

• The file system is organized
like an upside-down tree.

• Files are stored in
‘directories’

• Every directory has a parent
directory.

– With one exception, the
directory at the very top
called the Root Directory.

The Current Working Directory

• When you have a Unix terminal open, you are
always somewhere.
– You have a current location in the file system.

– It’s called your ‘current working directory’

• When you log in, you start off in your home
directory.
– Every user has their own personal “home”

directory.

– And you can move around the file system from
there.
• We’ll learn the commands move around soon.

The File System

• Every directory has a unique
path back to the root.

• On Unix this path is
represented by directory
names, separated by forward
slashes.

• For example, the file labeled ‘X’ in the picture is specified as
/APPS/GAMES/X

• The root directory itself is specified by just a single forward
slash:

/

pwd

• To find out where you are, enter the command ‘pwd’.
– Which stands for ‘print working directory’.

• /home/ggrant

 This means we’re currently two levels down from the root directory.

– In the root directory is a directory called ‘home’ (as well as
others)

– In the ‘home’ directory there’s a directory called ‘ggrant’
(as well as others)

– And the ggrant directory is where I was when I entered pwd.

command not found

• If you see this error, it means the command has not been
installed on your system for some reason.
– Or maybe you typed it in wrong.

• Any given installation of Unix will vary slightly from any
other by what commands are installed.

• But you can add missing programs by searching the web
for them and plopping them in the right directory.
/bin on our system

• Or you can use a program called a package manager to
find and install missing programs.

Finding Your Way Around

• When you get an account on a UNIX system, you should have a
particular directory called your “home directory”.
– No matter where you are, you can always get back to your home

directory by entering "cd" at the command-prompt.

• Unix maintains some 'variables’ for you and the location of
your home directory is in a variable called $HOME.
– Enter "echo $HOME" and see what happens.

Listing and Making Directories

• To list the contents of the current directory, enter 'ls'
– At this point there probably are no files or directories in your home so

this shouldn't return anything.

• To make a subdirectory of the current directory use the
'mkdir' command.
– Enter 'mkdir sandbox' to create a directory called 'sandbox'.

• Enter 'ls'again and you should now see 'sandbox' on the
list.

Moving Up the Tree

• To move up one level in the file system tree, simply enter:

➢ cd ..
– That’s cd followed by a space followed by two periods.

• You don’t need to specify the directory because there’s a
unique directory one level up.
– But you do have to work harder to move down.

• The following illustrates moving one level up from your
home directory:

– Notice how the prompt itself is telling you your location.

The Root Directory
• If we do ‘cd ..’ again it will take us to the root directory, the

top level of the tree.
• Doing an ‘ls’ there shows us the contents of the root

directory.

• Don’t be confused by the fact that there’s a directory on the
list called ‘root’.
– You can name a directory ‘root’ if you want, but it’s still not The Root

directory.
– The Root directory is simply called /

• It is not called not /root

Moving Down the Tree

• Enter ‘cd’ to get back to your home directory.

• To move into the sandbox directory, enter

➢ cd sandbox

– cd is short for 'change directory’.

– The sandbox directory should now be the current directory

– Enter 'pwd' to make sure you are in the sandbox.

– Enter 'ls' to see the contents of 'sandbox' (it should be
empty).

The Prompt (again)

• Now that we’ve moved into the sandbox, the
prompt reflects that.

• The tilde ~ is shorthand for your home directory.

• So ~/sandbox means you are one level below your
home in a directory called ‘sandbox’

• We’re not getting into it, but the prompt is highly
configurable, so on other systems it will not
always look exactly like this.

control - c
• The control-c key sequence is used to abort things and it

can be your best friend.

– On a MAC it may be command-c instead of control-c, for the
sake of exposition we will gloss over this distinction.

– Hold down the control key down, then hit ‘c’

• It's not uncommon that you try to do something
that takes longer than you expected.
– For example, you might be counting lines in an extremely

large file, eventually you decide it's not worth waiting and
want to abort the operation.

– Most of the time ctrl-c will abort the current operation and
bring you back to a prompt.

control - c
• If the command-prompt gets into a weird mode, control-c is always

a good thing to try. Common typos can cause this, for example
enter the following, including the single quote at the end:
➢ cd sandbox'

 Notice how it comes back with just a '>’. It has not executed the
command and now there’s a weird prompt.

 That's because the single open quote has confused it.

 Hit control-c to get out of this and try again.

Uploading Files
• Jupyter gives you a convenient utility to upload

files.
– It’s not usually that easy if you connect with an ssh

client…

Getting Some Files to Play With
• We have already put some data files on the system

for you to practice with.
– They’re in the directory called /data

• Enter the following command to copy one of the
data files to your home directory.
– Make sure you are in your home directory when you do

this (and don’t miss the period at the end)

cp /data/bio4536_course_files.tar.gz .
• Once it has finished copying, enter 'ls’ to make

sure you see this file listed.

TAR Archives

• You have saved a so-called ‘tar.gz' file. This is
similar to a Windows 'zip' file in that it is a way
to pack up several files into one, for easy
transport.

• To unpack the file, enter the following:

➢tar –xzvf python_course_files.tar.gz

Practice Files

• The previous operation unpacked 7 files from the
tar.gz archive.
– It listed the names of the files as it unpacked them.

• We will use these files to practice Unix.
• These are all text files of biological data, or

metadata.
– Metadata is data about data.

• For example, arraydata1.txt is microarray data.
– Every row corresponds to a spot on the array, and

therefore to some gene.

• sequence_reads1.fa is a file of high throughput
sequencing data.

Listing Files

• 'ls' is short for 'list' and it simply lists the files in
the current directory.
– Strictly speaking it lists the files and directories in the

current directory, but we're going to get lazy about
being that specific.

– If you follow 'ls' with the name of a subdirectory of
the current directory, it will list the files in that
subdirectory.

• By default, 'ls' lists things in alphabetical order,
with capitals coming before lower case.
– But 'ls' is very flexible, we will see shortly how to use

its options to return the results in many different
ways.

Wildcards and Tab Completion
• The asterisk (*) can be used as a wildcard in 'ls’.

– From your home directory, try the following:

➢ ls s*

➢ ls *txt

➢ ls a*t

Etc… you get the picture.

• The tab key is your other best friend on the command-line because it
completes names for you.

– Type "ls se" without hitting enter, and then hit the tab key.

– It should finish the string 'se' to be 'sequence_reads'
• That is where it stops, because there is more than one file which starts

'sequence_reads'.

– Hit the tab key a couple more times and it will show you all the possibilities.

– Type '1' (one) and then the tab again and it should complete the string.

• Play around with these two features and make sure you get it, because
bioinformaticians must make a habit of wildcards and tab completion.

ls -l
• The 'ls' function has many options.

• Enter 'ls –l' (that's the lowercase letter "L“) and see what
happens.

• When you do ls –l you get the files listed one per line.

– You may need to stretch out your window a bit, so that lines don't
wrap.

• The 'l' stands for
'long' meaning files
are listed in the 'long'
format.

• Long format displays a bunch of information for each
file.

• The very first character indicates whether this
is a regular file, a directory, or a link.

• If it's a regular file, then it's a dash "-"

• If it's a directory, then it's a "d"

• If it’s a link, then it’s an "l“

• We won't be concerned with links in this
class, but you can imagine what they are.

ls –l

• The rest of the information relates to permissions, ownership,
size and date of last modification.

• Permissions get complicated because there are three types of
permission:
– Read, write and execute

• And there are three categories of users:
– User, group and other.

– ‘User’ is you. ‘Other’ is everybody. And you can also create ‘groups’.

– Each of these three categories gets their own permissions to each file.
• That’s why there are nine of them

Permissions

• We don’t have time to go into permissions in
detail.
– Unix involves a lot of learning on the fly.

– Nobody remembers everything.

– Things you do regularly, you remember.

– Everything else you look up and/or learn on the fly as
you need it.

• But just keep in mind that regular Unix users
routinely run into bugs that trace back permission
settings.

Documentation
• The ls function has many options. One of my favorites is 'ls –

ltr' which lists the files in order of when they were created, so
that the most recent is at the end of the list.
– Notice how the three options 'l', 't', and 'r' are combined into '–ltr'.
– It would be equivalent to type 'ls –l –t –r’

• We will discuss two ways to find out about the possible options to a
command.

• One thing you can always try is to run the command with just the --help
option.
– That’s two dashes.

• For example:
➢ ls --help
• Returns documentation. You may need to scroll back if it’s a long page.

• Another way to get documentation is to use the ‘man’ function.
– See next slide.

man pages

• Pretty much every function has a man page,
which is documentation describing its usage and
options ("man" is short for "manual")

• For example, enter 'man ls'.

– You can page through the man page using the space
bar, or the up/down arrow keys.

– Most of this will be unintelligible to you at this point,
but some of the options should be clear. For example:

• -S sort by file size

Navigation

• The basic command for navigation is "cd" which stands for "change
directory".

• Entering "cd" all by itself takes you to your home directory.
– Enter cd now.

• Now enter "cd sandbox" to take you into the sandbox directory.
– Enter "pwd" to make sure.

• To move up one directory in the hierarchy, enter "cd .." (cd followed by
a space followed by two dots).
– REMEMBER THIS!

• You can also use cd with a "full path".
➢ cd /home/ggrant/sandbox
– This will always get you to the sandbox no matter where you are.

• Or you can get somewhere relative to your home directory by using a
tilde.
– The tilde is shorthand for your home directory.

➢ cd ~/sandbox
– This takes you to the sandbox no matter where you are

REVIEW: Four Ways to Get from Point A to Point B

• Move into your home directory (by entering 'cd').
Make a new directory called 'sandbox2'.

• Now 'cd' into original sandbox 'cd sandbox'.
• You can get to the sandbox2 directory in four ways:

1. Get there in steps:
• 'cd .. ' followed by 'cd sandbox2'.

2. Give the absolute path:
• 'cd /home/ggrant/sandbox2'

3. Give the relative path to the current directory:
• 'cd ../sandbox2'

4. Give the path relative to your home directory:
• 'cd ~/sandbox2'

File Naming Conventions
• Windows and Mac are very generous about what they allow in file

names.

• But things like spaces play havoc with the command line. You can
still use them, but you always work harder to work with files
named with spaces.

• The command-line user should avoid using such characters in file
names.
– Use underscores, periods, and/or dashes instead of spaces.

• RULES OF THUMB:
– Use only letters, numbers, periods, dashes, underscores in file and directory names.

– Do not start the name of a file with a dash, because otherwise they get confused
with function options.

– If you start a file name with a period, it will become "hidden" and will not show up if
you do 'ls'.

• You must do 'ls –a' ('a' for 'all') to see the hidden files.

– Typically, you should start all file names with a letter, a number or an underscore.

File Naming Conventions
• There several conventions for avoiding spaces, what you

use is a matter of taste:
– Use underscores, periods or dashes:

• my_file_of_data.txt

• my.file.of.data.txt

• my-file-of-data.txt

– Use Capitalization:

• myFileOfData.txt or MyFileOfData.txt

• This method is called "camel case" because of the way the caps are like a camel's
humps

– Use any combination of the above, there is no right or wrong,
just try to make it readable.

If you must…

• If you must put spaces or other weird characters in file and/or
directory names, then enclose the entire name in quotes.
➢mkdir "my project (draft 1)"

• Or alternatively you can put backslashes before weird
characters.
➢mkdir my\ project\ \(draft\ 1\)

• Some characters are just downright forbidden in file names
however, such as forward and backward slashes "\" and "/“.
– Forward slashes separate file names in a path, so if file names

themselves have forward slashes, that’d be a mess.

• Sometimes you have no choice but to deal with
unconventional characters because somebody else gives you a
file already named that way.
– The first thing I always do with such files is change the name.

Copying and Moving Files
- with cp and mv -

• Two more basic file manipulation functions
are 'cp' and 'mv'.

➢cp file1 file2
– makes a copy of file1 and calls the copy file2

– To copy a directory use 'cp –r' (‘r' for 'recursive).

➢mv file1 file2
– renames file1 to be file2

– this also works on directories

Deleting Files

• Use the 'rm' function to delete (remove) a file.

– Be careful, there is no recycle bin, once you 'rm' a
file it's gone.

– Try it out by removing the .tar file.

• You can also use the asterisk wildcard with 'rm'
but be careful, accidentally entering 'rm *' will
delete every file in the current directory.

– There is no undo or trash bin.

Deleting Directories

• You cannot use 'rm’ for a directory. For that there
is a separate function 'rmdir'.

– But if the directory is not empty the system won't let
you remove it that easily. And it may look empty but
still have hidden files (as discussed earlier, you can do
'ls –a' on the directory to see if there are any hidden
files).

– To force the issue on a non-empty directory, do 'rm –r’.

• r stands for "recursive" and it means it will remove the
directory and all of its contents.

• But it's dangerous, always be careful removing files.

Aliases

• I find myself doing the following very often:

➢ls –ltr

• It lists files in long format, sorted by time of
last modification, most recent last.

• Since I do it so often, I created an alias

➢alias lsr=“ls –ltr”

• Now I just need to type lsr

Persistent Aliases

• If you make an alias, it will disappear once you end
the session.

• If you want it to persist, you add it to your
.profile file
– On some systems it may be called .bash_profile or
.bash_login

• This is a hidden file (it starts with a dot)

• The commands in this file gets executed
automatically every time you log in.

• So, if you put the alias command there, it will
always be available.

Review
• Here are the commands we've seen so far, make sure you remember them before moving on.

– We will be revisiting some of these functions and their options in more detail later.
1. pwd

Print the current working directory

2. cd
Change the current working directory

3. ls
List file and directory names

4. cp
Copy a file

5. mv
Rename a file

6. rm
Remove file(s)

7. mkdir
Make a directory

8. rmdir
Remove directorie(s)

9. tar –xvf
Unpack a tar file

10. man
Display the manual page for a function

11. cal
Returns the calendar of any month/year up to the year 9999

12. date
Returns the current date and exact time.

13. echo
Echoes text and variable values to the screen

14. Aliases
Create shorthand for common commands and save them in .bash_profile to be persistent.

Binary versus Text
• There are two types of files on a computer, text files and binary files.

– Most files are binary these days.
• Images, videos, music, power point slides, excel spreadsheets, etc..

– Some common text files include:
• Web HTML source files.
• Files of source code in some programming language.
• Files of raw data.

– Some files that display as text are nonetheless still saved as binary files on
your disk, such as Microsoft Word documents

• In biology we deal a lot with text files.
– Files of sequence or of numerical measurements.

• The command line allows you to view text files gracefully, while to view
binary files you need special programs.
– You can manipulate binary files on the command line (e.g. change their

names, delete them, move them, etc.), but you cannot easily view them
from there.

• The functions on the following slides show how to view text files and
should usually be applied to text files only.

Inspecting Files
- using 'head' and 'tail' -

• The 'head' function shows you the first ten lines of a text file. (Note: See the earlier
slide titled “command not found” if this or any other function returns a “command not
found” error.)

➢ head ids_of_interest.txt
NM_022023
NM_144958
NM_028889
NM_172938
NM_172405
NM_175025
NM_029777
NM_027154
NM_207141
NM_013830

• If you do 'head –n 20 ids_of_interest.txt' it will show the first 20 lines.
– Or replace 20 with any number.
– The shorthand ‘'head –20’ is equivalent to 'head –n 20

• The 'tail' function works the same way, except that it shows the last ten lines of the
file. Tail also takes the numeric option.

Inspecting Files
- using ‘less' -

• The ‘less' function lets you see the entire file, one page
at a time.
– Enter ‘less ids_of_interest.txt' and see what happens.

– Use the space bar to scroll to each next page.

– To quit without paging all the way to the end, hit the 'q' key.

• The ' less’ command allows some more sophisticated
options.
– A very useful option is –S which enables both vertical and

horizontal scrolling.

– The less function also allows for searching for keywords in the
document.

– See the ' less' man page for a full description of all options.

Redirection

• "Redirection" simply means sending the output
of a command to a file instead of to the screen.

• The redirection operator is the ">" symbol.

• Try the following:
➢head -15 ids_of_interest.txt > first_15_ids.txt

– Now do 'ls –l' and you'll see a new file called
'first_15_ids.txt'.

– Do a 'more' on this file and see what's in there. You
should see the first 15 lines from the file
ids_of_interest.txt

• In summary, you have 'redirected' the output of
'head -15 ids_of_interest.txt' to a new file.

Redirection Continued…

• Be careful with redirection because you can easily
overwrite files by accident. If you do

➢head -15 ids_of_interest.txt > myfile.txt

 and myfile.txt already exists, it will be destroyed
and overwritten by the new file.

• Instead, if you use two ">" symbols in a row, it adds
to the current file (if there is one) without
destroying it
➢ head -15 ids_of_interest.txt > myfile.txt
➢ tail -15 ids_of_interest.txt >> myfile.txt

• This will put the last 15 lines after the first, so
myfile.txt after this should have 30 lines. Do
'more' on myfile.txt to make sure.

The cat function
• The 'cat' command is one of the most used of all commands.

– "cat" is short for "concatenate"

• You can use 'cat' to view an entire file.
– It's like 'more' but it doesn't give you one page at a time, it gives you

everything at once.
– Try 'cat ids_of_interest.txt' and see what happens.

• You can use cat together with the redirection operator as a most basic
text editor. Enter the following:
➢ cat > test1.txt
– Now type some text, anything, it can include newlines. When done hit

enter so the cursor is on a new line, and then hit control-d.
– Do 'ls' and you should see a new file, a file called 'test1.txt'.
– Do 'cat test1.txt' and it should show you the text you entered.
– To add text to the file do "cat >> test1.txt".

• Without the second '>', "cat > test1.txt " will destroy the original file and writes
the new one in its place.

– This is a way to very quickly jot or paste something into a file, but any
serious text editing should be done elsewhere, like in Pico.

Using 'cat' to concatenate things

• You can use concatenate to glue two or more files together. Try the following:

➢ cat first_15_ids.txt test1.txt

• It should return to the screen the contents of both files one after the other.
Now do:

➢ cat first_15_ids.txt test1.txt > test2.txt

– There should now be a file test2.txt that contains the concatenation of the
two files. Use 'ls' and 'cat' to make sure.

• You can't concatenate files in Windows Explorer or Finder, you would have to
use a text editor to merge them. But if your files are enormous, as they often
are in biology, your text editor might choke.

– A text editor wants to read an entire file into RAM memory all at once
which will fail if the file is larger than the available RAM.

– cat, on the other hand, doesn't need to read the files in all at once, in order
to write their concatenation to a new file.

• This is the only reasonable way to merge files that are gigabytes in size.

– Next generation sequencing produces gigabye sized files, and growing.

Inspecting Files
- counting lines, words, characters -

• The 'wc' command (for 'word count') gives the number
of lines, words, and characters in a file. Try the
following:

➢wc UCSC_mouse_knowngene_id_mapping

• This will return three numbers

– The first is the number of lines, the second is the number of
words, the third is the number of characters.

– To just get the number of lines, use 'wc –l'

Comparing Files

• The diff command is used to compare two text files. Create two
files as follows:

➢ cat > test1.txt
1 2 3
4 5 6
a b c

➢ cat > test2.txt
1 2 3
x y z
a b c

• Now run diff:

➢ diff test1.txt test2.txt
2c2

< 4 5 6

> x y z

The pipe operator "|"

• The vertical bar "|" is called the pipe operator.

• You use the pipe to direct the output of one command
to be the input of another.

– In other words, to daisy-chain commands together.

• Suppose, for example, we wanted the 12th and 13th
lines only of the file ids_of_interest.txt. We can do
that using head and tail as follows:

➢head -13 ids_of_interest.txt | tail -2

The pipe operator "|"
• As another example, the following counts the number

of lines of all files that end in .txt combined.

➢cat *.txt | wc –l

• And the following simply counts how many files are in
the directory that end in .txt.

➢ ls *.txt | wc –l

– There should be three:

• arraydata1.txt, first_15_ids.txt, and ids_of_interest.txt

High Throughput
- Gene Expression -

• MICROARRAYS

• Measure the expression
level of tens of thousands
of genes simultaneously
in a sample.

• Each spot corresponds to
a gene.

• The brighter the spot, the
higher the gene is
expressed.

Microarray Quantification

• For each spot, many pieces of information are recorded in the different
columns.

– In our case over 100 metrics and flags are output.

cut
• Very often in biology we deal with tab delimited

spreadsheets of data.

• The file arraydata1.txt in your sandbox is such a file.

– It is a file of information about a microarray experiment.

• We have seen how to grab lines of a file using head and tail. In contrast, 'cut'
allows you to grab columns.

• Enter 'head -1 arraydata1.txt' to see the first (header) line.

– This line shows the names of all the columns, there are 100 columns.

• Every row of this file (after the header row) represents a probe for a different
gene.

cut
• The sixth column gives the chromosomal location

of the probe. To get just this column enter the
following:

➢cut –f 6 arraydata1.txt | head

• We piped this to 'head' because otherwise it would dump
thousands of lines out to the window.
– Three of the entries are blank, since location is unknown or missing those probes

• Make a habit of using 'head' like this.

cut
- continued -

• Column 12 gives the name of the gene and
column 33 gives an expression intensity
level for the gene.

• To cut out just those two columns:

➢cut –f 12,33 arraydata1.txt > id2intensity.txt

• This redirects the output to a new file called
id2intensity.txt.

• Take a look at this file to make sure it looks proper.
– Use 'head' or ‘less' to look at the file, whatever you prefer.

• You can also specify a range of columns as follows:

➢ cut –f 12-20 arraydata1.txt

• This will grab columns 12 through 20.

paste
• 'Paste' is basically the opposite of 'cut'. It allows

you to glue files together horizontally.

• Don't confuse the 'cut' and 'paste' commands with cutting and
pasting using the mouse, they are not the same thing.

• Enter the following:

➢ cut -f 10,11 arraydata1.txt | head > temp1

➢ cut -f 33,12 arraydata1.txt | head > temp2

• Cat both files temp1 and temp2 to see what's in them, they
should both have ten lines, each with two columns.

• Now enter the following:

➢ paste temp1 temp2

• It should print out ten lines each with four columns. The two
files have been pasted together side-by-side.
– You can do this in Excel, but not easily if the file has millions of rows.

sort
• Sorting is basic and the Unix sort function is powerful, fast and easy.

• Try the following:

➢ cut –f 12 arraydata1.txt | head -20

• Now try:

➢ cut –f 12 arraydata1.txt | head -20 | sort

• The output is now sorted, in lexical order. Try the following instead:

➢ cut –f 12 arraydata1.txt | sort | head -20
– This gave a different answer, can you figure out why?

• Sort writes its output to the screen. If you want to save it, redirect it to a file.

• Two useful options to sort are:

1. -n which makes it sort numerically, if the data are numerical.

2. -u means any duplicate lines in the file will only be written once ('u'
for 'unique'). Try the following:

➢ cut –f 12 arraydata1.txt | sort | wc –l

➢ cut –f 12 arraydata1.txt | sort –u | wc –l

– The second command returns fewer lines, because entries in column
12 are not unique.

Review
1. cat

Prints files to the screen, and concatenates files vertically.

2. more or less
Displays a text file one page at a time, use spacebar to scroll.

3. head
Prints the first ten lines of a file
Use –n option to print n lines instead of ten

4. tail
Same as head, but replace 'first' with 'last'

5. cut
Gets columns from tab-delimited spreadsheets

6. paste
Concatenates files together horizontally

7. wc
Word count, displays number of lines, words and characters in a file

8. sort
Sorts files

9. The redirection operator ">" and ">>"
Sends the output of a command to a file

10. The pipe operator "|"
Sends the output of one command to be the input of another

11. And don't forget about wildcards and tab completion.

Practice Exercises 1
1. Construct a way to return the n-th line of a file using head, tail and the

pipe operator, for any n.
2. Count the total number of lines of all (text) files in the sandbox directory

combined, using one command with the appropriate wildcard.
– They should all be text files if you removed the .tar file

3. Put lines 1000 through 2000 of the file
UCSC_mouse_knowngene_id_mapping in a file called temp.txt

4. Make a file temp2.txt the first ten lines of which are lines 1 through 10
of temp.txt and the next ten are the last ten lines of temp.txt.
– Use wc to make sure temp.txt and temp2.txt have 1001 and 20 lines

respectively.

5. Use 'head' and redirection (twice) to make a file called temp3.txt that
has in it the first ten lines of both files in the sandbox that ends in .fa
– So temp3.txt should have 20 lines, use wc to make sure.

6. The file UCSC_mouse_knowngene_id_mapping is tab delimited.
Make a new file called "genesymbol2uniprot.txt" that just has the
two columns 'Gene_Symbol' and 'UniProt'.
– To figure out which are the right columns, look at the header row of the

file.

Control Key Shortcuts
• If you hit the up-arrow key a few times, it will scroll back

through your recent commands.
– Even if you close the window and start over later, the old commands

should will still be there.

• Scroll back to any previous command. Notice that the cursor is
at the end of the line.

• Hit control-a.
– The cursor should move to the beginning of the line.

• Now hit control-e.
– That should take you back to the end of the line.

• Control keys allow you to type less and to navigate without
moving your hands from the comfortable typing position.

• Unfortunately, the browser hijacks some of these so they’re
not all available to our web-based interface.

• The next page gives the expanded list of control keys.
– You don’t need to memorize them, just read through it to know what

you can do, then use it as a reference.

Summary of working control key shortcuts

Control key Action

f move cursor forward one position ('f' for 'forwards')

a move cursor to the beginning of the line

e move cursor to the end of the line ('e' for 'end')

c abandon this line, start a new one

k clear from the cursor to the end of the line – text is copied to the clipboard

u clear from the beginning of the line to the cursor – text is copied to the clipboard

y paste the text on the clipboard (if any)

d delete forward ('d' for 'delete')

h delete backwards

l clear the screen

r search backwards through previous commands, after hitting control-r type the string you are searching for

Practice Exercises 2
Move into your home directory

1. Put lines 101 through 200 of the file sequence_reads1.fa in a file called
temp.txt. What is the size, in bytes, of the file temp.txt.

2. In the file UCSC_knowngene_id_mapping, what is the value of the mRNA
field in the 12,345th row of data.

3. The file arraydata1.txt is a tab delimited spreadsheet. The header line gives
the meaning of each column. Each such meaning is described by one word.
Use head and wc to determine the total number of columns.

4. Consider the UCSC_knowngene_id_mapping file:
a) How many rows are in the file?

b) How many unique (different) id’s are there in the second column (the
Known_Gene_ID_UCSC field)?

5. What does the –n option to the mv function do?

History and control-r
• Enter 'history' at the prompt and see what happens. It

should list the entire history of commands you have
entered.
– Before doing this, you might want to enter 'clear' to clear the

screen.

• To reissue a command, enter '!' followed by the number of
the command on the history list.
– '!75' will re-execute the 75th command on the history list.
– To edit command 75 enter '!75:p' and then hit the up arrow (or

control-p).

• To search through the history of commands, hit control-r
and then start typing a search string.
– The commands matching the search string should display.
– After entering a search string, hitting control-r again scrolls back

through the previous commands that match the search string.

History Config

• Add the two commands to your .bash_profile
file.

export HISTSIZE=5000
export HISTCONTROL=ignoreboth

– If you forgot what .bash_profile is, review the
slides on “aliases”.

• The first will make it save the last 5,000
commands.

• If you execute a command twice in a row, the
second thing will make sure it’s only put once in
your history file.

• Just FYI, your history is saved in .bash_history

tar

• We have seen 'tar' already, when we unpacked that tar
archive of data files.

• The tar function can also be used to create archives.
Let's make an archive called txtfiles.tar of all files that
end in .txt. We do this with a wildcard:
➢ tar –cvf txtfiles.tar *.txt

• You can use wildcards like we did here, or you can just
list the names of the files to archive, separated by
spaces. If any directories are included in the list, it will
tar up the entire directory with all of its contents.

• Do ls –l and see how big the file is.

gzip

• The 'gzip' utility is used to compress a file. Enter the
following:
➢ gzip txtfiles.tar

• That will replace the file txtfiles.tar with a smaller file
txtfiles.tar.gz.
– Do ls –l again to see how much it compressed.

• For transporting large text files you want to compress them.

– Don't bother using gzip on binary files like images, music
or videos, those are already compressed about as much as
they can be. Use gzip on large text files.

• To uncompress simply use 'gunzip'.

• It is possible to untar and unzip simultaneously using 'tar -
xvzf'.

Text Editors
- nano -

• Working bioinformaticians need to learn to use a high-
powered text editor like Emacs.

• But, to get started, perhaps most intuitive alternative is Nano.
From your home directory, enter:

➢ nano ids_of_interest.txt
• The file should open in the window in a rudimentary text

editor.
• The commands are at the bottom and the '^' symbol means

hold the control key down. You can find more commands by
hitting control-g.
– Some are not available because the browser hijacks them,for

example you can’t use ctrl-w, ctrl-t or ctrl-n
– ctrl-w will close the browser tab, so be careful!

• You should be able to feel your way around this program and
you can use it for basic text editing.

grep
• A "string" is a term used to refer to any list of characters.

– For example, "abc123".

• The 'grep' function is used to search for strings in text files.
– grep is perhaps the single most useful command you can learn.

• Enter the following:
➢ grep ACGTA sequence_reads1.fa

• It should return ten lines (if they wrap, stretch out your window
to be wide enough, and do it again).
– To highlight the match itself, add use the --color option (note this

option requires two dashes).
➢ grep --color ACGTA sequence_reads1.fa

• These are the 10 lines in the file that have the string 'ACGTA'
somewhere in the line.

• The following returns the number of lines that have four A's in a
row:
➢ grep AAAA sequence_reads1.fa | wc –l
There should be 77 such lines, try it.

grep continued…
 wildcard .

• grep understands wildcards.
– The two simplest wildcards are dot '.' and star '*'.

• Dot will match any (single) character. The following
will return any line that has five G's followed by any
two characters followed by five more G's. There
should be five such lines.

➢grep GGGGG..GGGGG sequence_reads1.fa

– To actually match the period itself, precede it with a
backslash and put use quotes.

grep continued…
 wildcard *

• Star '*' must follow another character and it matches any
number of that character in a row. The following returns all
lines that have five G's, followed by any number (including
possibly zero) of A's, followed by five more G's.

➢ grep GGGGGA*GGGGG sequence_reads1.fa

– How would you modify this if you wanted to assure there was at
least one A between the two strings of five G's? There is exactly
one such line, see if you can use the * to return just that line.

• grep understands a very general wildcard syntax called
'regular expressions' that we will learn more of as we go.
– Just as a matter of trivia, grep stands for ‘global regular expression

print’ but you don’t have to remember that.

• Sometimes you want to be sure the text you are searching
for matches at the beginning or the end of a line only.

• For this use the ^ and $ symbols.
• For example, to get all lines that start with three C's in a

row, do the following:
➢grep ^CCC sequence_reads1.fa

• To get the lines that end in three C's, do the following:
➢grep CCC$ sequence_reads1.fa

• To find the lines that both start in a C and end in a C, pipe
two grep's together:
➢grep ^C sequence_reads1.fa | grep C$

• The "^" and "$" characters are called 'anchors' because
they anchor the term to a specific location (the start or
the end) of the string.

grep
- anchors ^ and $ -

• It's possible to chain more than one grep together using
the pipe operator to achieve more complex searches.

• There is exactly one line in sequence_reads1.fa that
has four A's in a row, four C's in a row, four G's in a row
and four T's in a row. The following will find it.

➢ grep AAAA sequence1.fa | grep CCCC | grep GGGG | grep TTTT

grep
- daisy chaining -

• The option –v tells grep to return everything that does not match.

• For example, the file sequence_reads1.txt has alternating lines of
sequence names and sequence. Head the file to see the first few
lines.

– Sequence name lines start with ">"
• This is fastA format.

– Let's return all lines that do not contain the ">".

➢grep –v ‘>’ sequence_reads1.fa | more

• Notice we put quotes around the search string '>' in the last
example.

– If we don't put the quotes, the system will confuse it with the
redirection operator.

– If you use characters that can confuse the system, the string must be
enclosed in quotes.

grep
- excluding matches -

• –A (for 'after') and –B (for 'before') are two very
useful options to grep.
– Use ‘–A n' to show for each line that matches the search

string, the n subsequent lines as well.
– Similarly, '–B n' will show the n lines before each match.

• The following returns two lines:
➢grep ^CCCC sequence_reads1.fa

• Now try the following:
➢ grep -B 1 ^CCCC sequence_reads1.fa
• Each line should be returned with the one line preceding it.
• Different matches are separated by a line with two dashes '--'.
• Think about how you might get rid of those '--' lines by piping

through another grep. Here's how to do it:
➢ grep -B 1 ^CCCC sequence_reads1.fa | grep -v -

grep continued…
-A and -B

• The -n option returns the line number of each match.

• The –i option ignores case

• The -c option returns just the count of the number of
matches, and not the matches themselves.
• Using -c is equivalent to piping the output of grep to wc -

l.

• The -w option forces grep to match only complete
words. Compare the following:
➢ grep 10 sequence_reads1.fa

This returns 13 lines, any line that has '10' in it.

➢ grep -w 10 sequence_reads1.fa

 This returns just one line, the line with '10' not appearing as part
of a bigger number.

grep continued…
- more useful options -

• Suppose you want to match a character that’s either an A or a G?

• The following will achieve that.
• grep [AG] file.txt

• You do not need a comma, the following will match an A or a G
or literally a comma.
• grep [A,G] file.txt

• You can also use ranges, the following will match any capital
letter:
• grep [A-Z] file.txt

– The following will match any number from 0 to 5
• grep [0-5] file.txt

– The following will match any read ID that starts with a 1, ends
with a 2 and only has numbers from 1 to 5 in the middle:
• grep 'seq\.1[1-5]+2[ab]' reads.fa

grep continued…
- groups -

GREP: Non-Matching Characters

• Suppose you want to match a character that’s anything
but a T?
– [^T] will achieve that.

• For example, if you want to find all rows in the file
reads.fa that have five A’s upstream of five G’s with
no T in between?
– The following will not achieve that:

➢ grep AAAAA.*GGGGG reads.fa | grep –v AAAAA.*T.*GGGGG

• This will make sure there aren’t any occurrences of five
A’s upstream of five G’s with a T in between, which is
too strong.
– For example, it will not find this line, even though there is

an occurrence of five A’s upstream of five G’s with no T in
between:

AAAAACGGGGGTGGGGG

GREP: Non-Matching Characters

• The grep syntax [^T] will match any (single) character
except T.

• So, [^T]* will match any string of characters as long as
none of them are T.

• Similarly, [^XYZ] will match any (single) character as
long as it contains no X’s, Y’s or Z’s.

• We can now solve our problem on the previous slide
as follows:

➢ grep "AAAAA[^T]*GGGGG" reads.fa

• This will match AAAAACGGGGGTGGGGG

– Because it has “AAAAACGGGGG” in it.

grep and Python
(you will need this for HW5)

• The “re” in the word “grep” stands for “regular expression”.
– Regular Expressions are basically wild-cards on steroids.

• You can call Unix commands from within python
– We’ll see how later in these slides.

• But python also has its own built-in functions to do regular expressions.
– No surprise, the function is called “re”.

• You must import the ‘re’ package.
• The following two functions perform matching and replacement.

import re

bool(re.search(pattern, string))
 This returns True or False depending on whether the pattern is found in the string.

new_string = re.sub(pattern, replacement, original)

 This takes the string “original” and replaces “pattern” with “replacement”
 For example: re.sub(‘A+’, ‘TTT’, “AAGGNNNAAAAAAACCCCC”)
 This returns TTTGGNNNTTTCCCCC (all strings of A’s replaced with three T’s).

That’s enough info to solve the HW, but for those interested, this page has full info on the python re function:
https://docs.python.org/3/howto/regex.html

There’s a lot to it, but bioinformaticians must use regular expressions with great regularity, so eventually you
must master them.

https://docs.python.org/3/howto/regex.html

Review
• grep

– Search for text in text files

• clear
– Clear the screen

• tar
– Pack several files into one for ease of transport and storage

• gzip/gunzip
– Compress/decompress files for ease of transport and storage

• history
– See a listing of previous commands

• control key shortcuts
– Shortcuts for editing efficiency, using the control key

• variables
– Name/value pairs that the system uses for various

bookkeeping.

Practice Exercises 3
1. Put all lines in the file:

– UCSC_mouse_knowngene_id_mapping

that have the word 'globin' in them in another file called globins.txt
– How many lines have the word 'globin'? Did you pay attention to

case?

2. Now count the number of lines where the word 'globin' is not
part of a bigger word like 'immunoglobin'.

3. Make a file called zinc_rows.txt that has just the description
field of all lines where the word "zinc" appears, regardless of
the capitalization.
– How many lines are there?

4. Make a file called zinc_rows_sorted.txt which has the same
rows as zinc_rows.txt but in sorted (lexical) order.

5. Are there any lines in your file where the word 'finger' appears
before the word 'zinc'?

6. How many rows have the word 'zinc' appearing at least twice?
– Find rows that have ‘zinc’ appearing exactly twice.

Practice Exercises 3
- continued -

7. How many times does a command appear on
your history list with the string 'cd' in it?
– Use pipe, grep, wc to find out without actually

counting them by hand.

8. You have a file called reads.fa. This file has
sequences with names that alternately end in
'a' and 'b'.

i. Get all the 'a' entries into a file called forward.fa (get
both the name line and the following sequence line, for
each one). Do it without there being any extra lines in
forward.fa, just the name lines and the sequence lines.

ii. Similarly, get the 'b' sequences into a file called
reverse.fa

9. Consider the file sequence_reads1.fa

a) How many sequences have at least six C’s in a row?

b) How many have six C’s but no more than six?

10. Consider the anchors ^ and $ used in a grep
search

a) How would you use the anchors to grep for a blank
line in a file?

b) Use this to count the number of blank lines in the
file UCSC_mouse_knowngene_id_mapping:

Practice Exercises 3
- continued -

Using Excel

• It is very common to receive data in the form of an
Excel spreadsheet.

• An Excel spreadsheet is a binary file, we cannot just
treat it as text.

• But Excel allows you to export a spreadsheet to text
format.
– Click on "Save As" and then choose "Text – Tab

delimited" from the list of file formats. It will ask you if
you are sure, because things like graphs will be left out of
the text file.

• This should save a text file on your system that you
can now treat like any other text file.

Excel

• Open Excel and start a new blank document. In the
document, make a table with five rows and four
columns as follows:

• Now save this as tab delimited text, with the name

excel_test2.txt

Id Exp1 Exp2 Exp3

ID1 2 2 4

ID2 3 4.5 2

ID3 2.5 3 5

ID4 1 0 3

Upload

• Upload the file to your home directory

• Cat the file to see what's in it. It should display a nice
clean text version of the excel spreadsheet.

Trojan New Line Characters

• Enter the following:
➢ cat -v excel_test2.txt

• You should see this:

• The –v option tells cat to display weird characters.
• Those '^M' things are non-Unix-friendly newlines put there by Excel.

– And many other programs do the same.

• Some Unix programs are smart enough to ignore them (like cat), others
will choke on them.

• If somebody gives you a text file and something is not working with it,
this is one of the first things you should check.
– Use cat –v and look for funky characters.

Running Programs
• Often tools for processing biological data are only

available as command line programs.

• Types of programs we might encounter:
– Perl, Python, Ruby programs

• More commonly known as 'scripts', these run anywhere you have
Unix

– Java programs
• Convenient because the same code will run anywhere, once java

is installed on your system, and Java is available for all systems.

– C and C++ programs
• These are the fastest languages, but the code must be tailored

for each operating system and so it might work on some but not
on others.

• And you may have to "compile" the code yourself, more on this
later.

Source Code vs. Binaries

• Programs in Java, C and C++ are created as text
files (called 'source code') which are then
transformed into the binary files.
– It’s those binary files (called ‘executables’) that you

actually run.
– The transformation from source code to binary files is

called 'compilation'.
– Java and C are called 'compiled' languages.

• In contrast for Perl, Python, Ruby programs there
is no difference between the file of code and the
file you run.
– These are called 'interpreted' languages.

Perl, Python, Ruby
- interpreted languages -

• Python is a workhorse of bioinformatics, with more
Python code in the field right now than any other
language.

• Part of the appeal of interpreted languages is that they
are fast easy languages to write short programs with.
– Terminology: small down-and-dirty programs are often called

'scripts', however there is no real sharp distinction between
what we call a 'program' and what we call a 'script'.

– Which scripting language people use is largely a matter of
taste.

• Perl, Python and Ruby run anywhere you have Unix.

Perl Example
• We are going to run a couple of perl scripts.

– Nothing deep, just a simple example to get the idea of how to
run a script.

• Make sure you’re in your home directory, then copy this
file there:

➢ cp /data/perlscripts.tar.gz .

• And unpack it

➢ tar –xvzf perlscripts.tar.gz

• You should now have the following three scripts:
1. table2columnwisepercents.pl

2. modify_fa_to_have_seq_on_one_line.pl

3. primes.pl

Perl Example

Run the first one by
entering the following:

perl table2columnwisepercents.pl

This runs the script with no options or parameters.

If you do that, it will return
what we call ‘usage’

Some scripts are documented better
than others, it depends on the author
and how much effort they made to
document it, so this might not always
work, but it's always worth a try.

Usage Syntax

• The first line shows the basic usage:
– Usage: table2columnwisepercents.pl <table> [options]

• There is one required
argument <table>
and some optional
arguments as well.
– It's convention that

required arguments
go betwee pointy
brackets and optional
arguments between
square brackets.

Perl Example
- continued -

• This script is also kind
enough to tell us what
it does:
– This script replaces each

value by its percentile in its
column.

• As well as how it
expects the file <table>
to be formatted:
– <table> is assumed to have

header of column names
and first column of row
names.

Perl Example
- continued -

• Run the script on that file we created with excel:

➢perl table2columnwisepercents.pl excel_test1.txt

• It should return the table of percentiles. See if you can
figure out how to get it to sort on the second column.

Python and Ruby

• From a user's perspective there really is no
difference between a perl script, a python script or
a ruby script.
– Except to run a perl script you precede the script name

with 'perl', to run a python script you precede it with
'python', and to run a ruby script you use 'ruby'.

• The difference in these languages is primarily
relevant for the programmers writing the scripts.
– Perl is generally considered more down-and-dirty but is

by far the most popular. Python and Ruby are
considered more elegant, but it really depends on who
you ask.

Compiled Languages
 C/C++ vs. Java

• In compiled languages, you may be given binaries, or you may
be given source code that you have to compile yourself into
binaries.

• C and C++ programs must be written and complied differently
for each system.
– That is why you often must choose which versions of a

program to download, depending on your operating
system.
• It's not unusual that the author compiles binaries for

one OS and not for another. You've probably seen
Windows only or Mac only programs.

– For corporate software if something is not available for
your OS you might be out of luck.

– In academics people tend to make the source code
available, so you can try to compile it for your system if
binaries are not available. Compilation for your system
may or may not be easy to do.

• Java is more universal. You can compile it once and it will run
anywhere. That's one reason people like Java. Typically for
Java programs you are given the binaries and they work
everywhere.

• We will be running some compiled programs later in the
course.

Running Command-Line Programs
- generalities -

• In modern biology you often operate on very large files
and programs can take a very long time to run.

• As such, you may want to:

– Run a program in the background while you do
other things

– Suspend a program so you can hibernate your
computer.

– Kill a program because you get tired of waiting or
because it seems to have gotten stuck somewhere.

• Unix offers you several ways to run, monitor and
terminate programs, we look at those next.

Generalities of Running Programs
- continued -

• Run the perl script findprimes.pl. It prints out one
prime every second. It will never finish, to stop it
use control-c.

• Now redirect the output to a file:

➢perl findprimes.pl > primes.txt

• Let it run for ten seconds or so, and kill it using
control-c. Cat the file primes.txt to see how many
primes were written to it before you killed it.

• Now run it again and wait ten seconds again, but
instead of hitting control-c, this time hit control-z.

Generalities of Running Programs
- continued -

• cat the file and see what is in there.

• By doing control-z, you haven't killed the program,
you have just suspended it.
– Enter 'jobs' and you should see the perl job listed as

"Stopped".

– Enter "fg" (for 'foreground') to start it back up. If there is
more than one job running, you can enter 'fg n' where n
is the job number.

• Wait ten more seconds and then kill it using control-
c.

• Cat the file again, it should have grown by a few
more primes compared to before.

Generalities of Running Programs
- running jobs in the background -

• Run primes.pl again:

➢perl primes.pl > primes.txt

• Do control-z to suspend it. Now enter 'bg' (for
'background').

• Now enter 'jobs'.

• Now you should see the program listed as
"Running".

– It is running in the background.

• Cat the file primes.txt, wait a few seconds and
do it again, the file should be growing.

Generalities of Running Programs
- running jobs in the background -

• Enter "tail –f primes.txt", that will display the
file primes.txt in real time as it grows. Watch it
for five or ten seconds and then hit control-c to
quit out of "tail –f".

• To kill the perl script, enter 'fg' to bring it back to
the foreground, and then control-c.

• Another way to run things in the background, and
to do it all in one step, is to put an ampersand "&"
after the command:

➢perl findprimes.pl > primes.txt &

Generalities of Running Programs
- killing jobs -

• Do 'jobs' and make sure nothing is running, if anything
is, terminate it.

• Run primes.pl in the background again:

➢perl primes.pl > primes.txt &

• Do 'jobs' to make sure it's running.

• Now open a new session (don't close the current one,
just open a second one).

• Do 'jobs' in the second window, notice you do not see
the job running, because a session does not show
what's running in other sessions.

Generalities of Running Programs
- killing jobs -

• You can see the other processes running by using the
'ps' function. Enter 'ps x'. You should see one entry on
the list that indicates a perl script running.

• Note the PID of this process (PID stands for "Process
ID").

• If the PID is N, enter "kill N". Now go to the first
window and do a 'jobs' and the process should have
been terminated.
– Sometimes jobs don't like to die, to insist use 'kill -9 N'.

• Now you know how to kill a job from another window.

Wrapping UNIX
Commands in

Python

• You can call a UNIX command from your
python script.

• It may perform an action, like deleting a file.
• Or it may return some output, like calling

“cat” on a file.
– In the latter case you can capture the

output in a variable.

Example: Unix from Python

• Suppose the file data.txt has the four lines of text:
>seq1

AGATCAG

>seq2

GATCAGG

• We want to capture the contents
of the file in a variable.
– The following achieves that.

– We’ve named this program:
unix_wrap_test1.py

Example: Unix from Python
• Running the program

• Notice how it printed two
newlines at the end.
– The file had a newline at the end.
– The python print command also puts a
newline at the end.

– So, you end up with two.

Now … PERL

• Let’s do the exact same thing in perl.

• Two short lines.
– Just put the command between back ticks.

• Output is the same, except the print
command does not add another newline.

Shell Scripts
• Suppose you need to execute a sequence of commands

repeatedly.
• You can put them in a file and “source” the file.
• For example, make a file named
 commands1.sh
 with the following three lines
 grep NM_010922 arraydata1.txt | head -1 | cut -f 6
 grep NM_028889 arraydata1.txt | head -1 | cut -f 6
 grep NM_207141 arraydata1.txt | head -1 | cut -f 6

– Each command grabs the sixth column of tab delimited
text for the first row with a specific ID.

• Now execute:
> source commands1.sh

• Assuming the file arraydata1.txt exists, it will return
three rows of output.

Shell Scripts
• Just as python is a programming language from which you can

execute UNIX commands in, ``bash'' is also a programming
language that you can execute UNIX commands from.
– It's in fact a programming language that was made specifically for that job

of executing commands.

• So, executing commands in a bash script is easy.
– You don't need to call them with a function like in python or use backticks

like in perl, you just put the command directly and verbatim into the script
and it knows what to do.

• On the other hand, loops and other mechanisms of program flow
that you are used to and exist in all procedural programming
languages are clunkier and more particular in a bash script than
in almost any other language.
– That’s the tradeoff, if your program is heavy on UNIX commands and not

much else, then use a shell script, if it’s a complex program heavy on
program flow (lots of loops and other stuff), then use python.

More Commands
• The following web page has a nice overview

of about 60 Unix commands, plus other
useful info.

– You will want to read this if you decide to become serious about UNIX.

• https://www.freecodecamp.org/news/the-linux-commands-handbook

• This handbook does not try to cover everything under the sun
related to Linux and its commands.

• It focuses on the small core commands that you will use the 80%
or 90% of the time, and tries to simplify the usage of the more
complex ones.

UNIX is a lifestyle, a community, a universe

• It’s the most inclusive community imaginable, all you need to join is a
little bit of knowledge.

https://www.freecodecamp.org/news/the-linux-commands-handbook

	Slide 1: Introduction to Bioinformatics
	Slide 2: File Manipulation
	Slide 3: What do the Pros Do?
	Slide 4: Our Goals
	Slide 5: The Old Days
	Slide 6: Example Command
	Slide 7: Text in / Text out
	Slide 8: Case Sensitivity
	Slide 9: Interfaces
	Slide 10: The File System
	Slide 11: Navigating the File System
	Slide 12: So, what exactly is an Operating System?
	Slide 13: So, what exactly is an Operating System?
	Slide 14: Many Flavors of Unix
	Slide 15: Layers
	Slide 16: Emulation
	Slide 17: UNIX is Under the Hood of your MAC
	Slide 18: Mac Under the Hood
	Slide 19: Windows Emulator on Mac
	Slide 20: UNIX Emulation in Windows
	Slide 21: Four Layers
	Slide 22: Getting UNIX on Your Computer
	Slide 23: Remote Access
	Slide 24: SSH Client
	Slide 25: The Web is mostly UNIX
	Slide 26: Clarification: URLs
	Slide 27: Clarification: Non-Unix Servers
	Slide 28
	Slide 29: The BIOL4536 Server
	Slide 30: Why is Unix Text Only?
	Slide 31: Loss of Functionality
	Slide 32: A Word on Text Editors
	Slide 33: Microsoft Word Blank Document
	Slide 34: Microsoft Word Small File
	Slide 35: File in Windows Explorer
	Slide 36: Baggage
	Slide 37: Text Files
	Slide 38: File in Windows Explorer
	Slide 39: Unix Display
	Slide 40: Text Editors
	Slide 41: Using the Command Line
	Slide 42: Connecting to the BIOL4536 Server
	Slide 43: Log In
	Slide 44: Jupyter
	Slide 45: Launch a Terminal
	Slide 46: Launch a Terminal
	Slide 47: The Prompt
	Slide 48: The Prompt
	Slide 49: Commands
	Slide 50: cal for example
	Slide 51: Options
	Slide 52: cal
	Slide 53: cal
	Slide 54: Options and Parameters
	Slide 55: The File System
	Slide 56: The Current Working Directory
	Slide 57: The File System
	Slide 58: pwd
	Slide 59: command not found
	Slide 60: Finding Your Way Around
	Slide 61: Listing and Making Directories
	Slide 62: Moving Up the Tree
	Slide 63: The Root Directory
	Slide 64: Moving Down the Tree
	Slide 65: The Prompt (again)
	Slide 66: control - c
	Slide 67: control - c
	Slide 68: Uploading Files
	Slide 69: Getting Some Files to Play With
	Slide 70: TAR Archives
	Slide 71: Practice Files
	Slide 72: Listing Files
	Slide 73: Wildcards and Tab Completion
	Slide 74: ls -l
	Slide 75
	Slide 76: ls –l
	Slide 77: Permissions
	Slide 78: Documentation
	Slide 79: man pages
	Slide 80: Navigation
	Slide 81: REVIEW: Four Ways to Get from Point A to Point B
	Slide 82: File Naming Conventions
	Slide 83: File Naming Conventions
	Slide 84: If you must…
	Slide 85: Copying and Moving Files - with cp and mv -
	Slide 86: Deleting Files
	Slide 87: Deleting Directories
	Slide 88: Aliases
	Slide 89: Persistent Aliases
	Slide 90: Review
	Slide 91: Binary versus Text
	Slide 92: Inspecting Files - using 'head' and 'tail' -
	Slide 93: Inspecting Files - using ‘less' -
	Slide 94: Redirection
	Slide 95: Redirection Continued…
	Slide 96: The cat function
	Slide 97: Using 'cat' to concatenate things
	Slide 98: Inspecting Files - counting lines, words, characters -
	Slide 99: Comparing Files
	Slide 100: The pipe operator "|"
	Slide 101: The pipe operator "|"
	Slide 102: High Throughput - Gene Expression -
	Slide 103: Microarray Quantification
	Slide 104: cut
	Slide 105: cut
	Slide 106: cut - continued -
	Slide 107: paste
	Slide 108: sort
	Slide 109: Review
	Slide 110: Practice Exercises 1
	Slide 111: Control Key Shortcuts
	Slide 112: Summary of working control key shortcuts
	Slide 113: Practice Exercises 2
	Slide 114: History and control-r
	Slide 115: History Config
	Slide 116: tar
	Slide 117: gzip
	Slide 118: Text Editors - nano -
	Slide 119: grep
	Slide 120: grep continued… wildcard .
	Slide 121: grep continued… wildcard *
	Slide 122: grep - anchors ^ and $ -
	Slide 123
	Slide 124
	Slide 125: grep continued… -A and -B
	Slide 126: grep continued… - more useful options -
	Slide 127: grep continued… - groups -
	Slide 128: GREP: Non-Matching Characters
	Slide 129: GREP: Non-Matching Characters
	Slide 130: grep and Python (you will need this for HW5)
	Slide 131: Review
	Slide 132: Practice Exercises 3
	Slide 133: Practice Exercises 3 - continued -
	Slide 134
	Slide 135: Using Excel
	Slide 136: Excel
	Slide 137: Upload
	Slide 138: Trojan New Line Characters
	Slide 139: Running Programs
	Slide 140: Source Code vs. Binaries
	Slide 141: Perl, Python, Ruby - interpreted languages -
	Slide 142: Perl Example
	Slide 143: Perl Example
	Slide 144: Usage Syntax
	Slide 145: Perl Example - continued -
	Slide 146: Perl Example - continued -
	Slide 147: Python and Ruby
	Slide 148: Compiled Languages C/C++ vs. Java
	Slide 149: Running Command-Line Programs - generalities -
	Slide 150: Generalities of Running Programs - continued -
	Slide 151: Generalities of Running Programs - continued -
	Slide 152: Generalities of Running Programs - running jobs in the background -
	Slide 153: Generalities of Running Programs - running jobs in the background -
	Slide 154: Generalities of Running Programs - killing jobs -
	Slide 155: Generalities of Running Programs - killing jobs -
	Slide 156: Wrapping UNIX Commands in Python
	Slide 157: Example: Unix from Python
	Slide 158: Example: Unix from Python
	Slide 159: Now … PERL
	Slide 160: Shell Scripts
	Slide 161: Shell Scripts
	Slide 162: More Commands

