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Nucleic Acid

• There are two major classes:

– DNA

– RNA

• DNA is typically double-stranded, RNA is typically 
single-stranded.

– However, like everything in biology, there are exceptions.

• Here we care very little about the chemistry and 
physics of these molecules.

• What we really care about is its ‘sequence’

• Nucleic Acids form the primary 
information-carrying molecules in a cell.



Sequence

• A single strand of DNA is a molecule that 
is constructed from four different 
‘nucleotides’ connected linearly.

• We abbreviate the four nucleotides A, C, 
G and T

– adenine, cytosine, guanine and thymine

• Therefore, as far as we’re concerned, a 
strand of DNA is just one long word 
written in four letters.

• These words encode most of the 
information it takes to make an organism.



DNA Double Helix

• DNA typically has two strands.

• But one strand uniquely determines the 
other.

– A only pairs with T

– C only pairs with G.



Terminology
• A “String”, or “Sequence” is an ordered list of 

letters, or numbers.

• A “Substring” of a string is a contiguous 
sequence of characters from the string

• A “Subsequence” of a string is sequence derived 
from another sequence by deleting some 
elements without changing the order of the 
remaining elements

           AGACTATCTACAATTGT          -  string

                   CTATCTA                          -  substring

           AGA  TATC      AATT               - subsequence



DNA

• DNA is somewhat passive, like a book.

–Same in every cell.

– Interacts with environment by being 
“read”.

• Also known as “transcription”.

–DNA consists of just a few very long 
sequences, called ‘chromosomes’, which 
are tens to hundreds of millions of bases 
each.



Genes

Some RNA are translated into protein, in which 
case RNA is just a transfer of information from 
DNA to the protein assembly machinery.

The protein coding part is a subsequence of the 
gene.

• Consisting just of exons

The corresponding RNA are called mRNA, ‘m’ for 
‘messenger’

All other RNA are called ‘non-coding’.

most non-coding RNA are ‘regulatory’.

Some non-coding RNA are ‘structural’ and 
form components of complexes.

Non-coding RNA comes in all sizes, from 
microRNA  of ~20 bases to long intergenic 
RNA (lincRNA) which can be thousands of 
bases

“Genes” are substrings of chromosomes 

that get copied into RNA, which then go 

off and do something.



Sequencing

• The structure of DNA 
was discovered (exactly) 
70 years ago (1953).

• Since then, our ability to read DNA sequences has 
progressed steadily.

• In the 1970’s “Sanger Sequencing” was developed 
which made sequencing routine for the first time.

– They gave Sanger his second Nobel Prize for this.

– But it was still relatively low throughput and expensive.



The Human Genome
• Using Sanger Sequencing it took more than 10 years and 

billions of dollars to sequence a first rough draft of the 
human genome.

–  3,200,000,000 nucleotides.

• So-called “Next Generation 
Sequencing” (NGS) was 
developed in the early 2000’s 
and by 2010 was already in 
widespread use.

– They also call it “High Throughput Sequencing” (HTS).

• We can now sequence a human genome in a weekend 
for a couple thousand dollars.



Length Limitations of Sequencing 
Methods

• A typical DNA molecule is 100 million nucleotides.

• We hope one day to be able to read such a long (single) 
molecule from end to end.

– But right now, we’re not even close.

• TERMINOLOGY: A contiguous segment of sequence 
output by a sequencing machine is called a “READ”

– Sanger sequencing produces reads on the order of 
500 bases.

– NGS reads are closer to 150 bases.

• 125-150 is routine, though it can be pushed to 
over 250 now.

– Longer read technologies are maturing, but they still 
have issues limiting their practical application.



Short vs. Long Read 
Technology

• There are platforms that produce 
reads on the order of thousands of 
bases.

– Two platforms currently offer this: 
Pacific Biosciences and Oxford 
Nanopore

• But they have very high error rates, on 
the order of 15%.

• One company, Illumina, has a near 
monopoly  in the short-read market.

– Therefore, we will focus on 
Illumina short-read data



Shotgun Sequencing

• In order to sequence a long molecule, it 
is first fragmented into small pieces on 
the order of 200 – 500 bases.

• Then for each fragment, only about 100-
150 bases are read, typically from both 
ends.



• When sequencing a transcript, the raw data 
consists of just the red parts in the figure.

• For technical reasons, reads don’t (usually) go all the way to 
the very end of the fragments.
– But usually close to it.

– We’ll see why in a later lecture



Assembly

• Once we have the 
(millions of) reads, 
then comes the hard 
part.

• Assembling them back 
into the full original 
sequence by 
identifying overlapping 
reads and glue them 
together into longer 
and longer “contigs”.

Shotgun Sequencing



The Human Genome Project
• They started with a 

hierarchical strategy.

• First divide the genome 
into large pieces (on the 
order of hundreds of 
thousands of bases each)
– Called BAC’s (Bacterial 

Artificial Chromosomes)

– We know how BAC’s fit 
together to make a 
chromosome.

• Then use shotgun 
sequencing on each BAC 
to determine its  
sequence.



Whole Genome Shotgun

• Around 2000 a debate started.
– Gene Myers versus Phil Green

• Some were saying skip the BAC step and go straight to whole 
genome shotgun.

• The whole genome advocates prevailed, and the government 
changed approach.



From Reads to Analyzable data

• Sequencing genomes is just 
one of many things you can 
do with NGS.
– It’s the bioinformatician’s job 

to piece together the 
disconnected information 
(reads) to accomplish 
whatever is the goal at hand.

• Given the fast pace of technology these days, method 
developers are always up against a fast-moving target.
– You may spend years developing a method, only to find it’s obsolete 

before you even publish it.

– For example, whole companies and careers were destroyed when 
sequencing replaced microarrays around 2010.

Example Analysis Pipeline



Example Applications of NGS

• To sequence the DNA of a new species, the 
job is to assemble reads (puzzle-like) into a 
full genome.

• If we’re sequencing DNA of an already 
sequenced species (e.g., human) then the 
job might be to determine single 
nucleotide polymorphisms.

– Single base differences with respect to 
the original reference genome.

• If we’re sequencing RNA the job might be 
to identify which gene a read came from.

– To assess gene structure, or the 
expression level of that gene.



Alignment

• In every case we must employ sequence alignment.

• “Sequence alignment” is a broad term which comes in many flavors.

• But at its most basic, we align two sequences, that we assume are related

– Perhaps one is a subsequence of the other, or

– Perhaps both are descended from a common ancestor sequence.

• We align to represent this relationship.



Evolution 
of 

Sequences

Consider the following sequence:
   AGATTACAGAT

Depending on many factors, this 
sequence will mutate over time.

• If it’s not a particularly important part of 
the genome, then it may just drift 
randomly.

• If it is extremely important, then it may 
strongly resist mutations.

We identify three basic mutations 
that can modify the sequence.



Substitutions

• Substitutions happen when one 
nucleotide changes into another.

       AGATTACAGAT

       AGATAACAGAT

• If this happens in the protein coding 
part of a gene, it may (or may not) 
change the protein itself.

• Even if it doesn’t alter the protein, it 
could alter how it is regulated.

• Or it may simply do nothing.



Insertions

• An Insertion happened when a 
new base, or bases, are inserted 
between two neighboring bases.

• For example, if this sequence

       AGATTACAGAT 

   evolves into this one

       AGATTCACAGAT

• If this happens in a protein 
coding gene, it can have massive 
consequences since it potentially 
changes the codon for every 
amino acid to follow.



Deletions

• A Deletion happened when a 
base, or bases, are deleted.

• For example, when this sequence

       AGATTACAGAT 

   mutates into this one

       AGATTCAGAT

• This again can have a massive 
impact on a protein coding gene.



Insertions 
and 

Deletions of 
multiple 

bases

• Insertions and deletions can involve 
more than one base in a row.

• For example, 

      AGATTACAGAT

    could evolve into

      AGATAGAT

• Since codons consist of three 
nucleotides, a deletion of a triple usually 
has a much less dramatic impact on a 
protein.



Terminology



Directionality

• Suppose we have two sequences in two 
different species that differ by one 
base.

    AGATTACAGAT  (human)

    AGATTTCAGAT  (mouse)

– Assume we know these two 
sequences are related.

• What we don’t know is which one was 
the ancestral sequence and which 
species experienced the mutation.

• Could be the common ancestor had an 
A that mutated into a T in the line to 
humans.  Or it could be the other way 
around.

– It could even be the result of two 
mutations.



Alignment

• We represent the 
evolutionary relationship 
with an “alignment”

           AGATTACAGAT

           | | | | | | | | | |

           AGATAACAGAT

• When there are only 
substitutions, like this, it’s 
not complicated.



Indels

• When there are insertions or 
deletions, it’s represented like this

                 AGATTACAGAT       Sequence #1

                | | | |          | | | |

                 AGAT- - - AGAT       Sequence #2

• Since we do not know if it was an 
insertion in Sequence #1 or a deletion 
in sequence #2 that resulted in this, we 
use the term ‘indel’



Indel/Indel

• When we construct alignments, we 
specifically avoid aligning an indel with 
another indel because there’s no 
information added by doing that.

• In other words, we do not make 
alignments like this:

  AG-CTC

  |     ||    

  AC-CTG

• The indel/indel might as well be 
removed:

  AGCTC

  |   ||

  ACCTG



Point of Confusion
• We need a term for something that’s not an indel.

– And the agreed upon term is to call it a ‘match’

• But this introduces a point of confusion.

– Sometimes ‘match’ simply means not an indel.

– And other times ‘match’ means the two things are 
equal.

• For example, consider the first position in the 
following, where A is aligned to C.

• In one context we call this a match because it’s not an 
indel.

• In another context we call this a mismatch because 
they’re not equal.

– It should be clear from context.



Example Alignment

• Alignment 
between a 
human and 
mouse gene.

– Query = Mouse

– Sbjct = Human

• Notice that the 
coordinates go 
up in the query, 
but down in the 
Subject.



Optimal Alignment

• How do we know we have the “correct” 
alignment?
– We don’t and usually we cannot know for sure.

• Instead, we look for the alignment that’s 
“best” in some mathematical sense.
– On the assumption that a judiciously chosen 

mathematical criteria can reflect reality closely 
enough to serve practical purposes.

• In other words, we will find a way to ‘score’ an 
alignment so that better alignments have 
better scores.
– Then we search for an algorithm that finds the 

alignment with the best possible score.



Edit Distance
• There are many ways to score an alignment.  

The simplest is the so-called ‘edit distance’.

• The edit distance adds one for each single 
nucleotide substitution and one for each single 
nucleotide indel.

• Smaller edit distances are better.

                 ACATTACAGAT       Sequence #1

              |    | |   | | | |

                 AGAT- - - AGAT       Sequence #2

• Edit Distance = 4



Scoring 
Schemes

In what follows we will use scores, not edit distances.

Indels are penalized greater than mismatches.

Larger scores are better

A more flexible alternative to the edit distance is to 
involve negative numbers.

E.g., +1 for a match, -1 for a mismatch and -2 for an indels.



Sequence 
Alignment 
Algorithms

• Given a scoring scheme, an 
alignment algorithm finds an 
alignment with the best possible 
score.

• We say “an” optimal alignment 
because there may be a tie for first 
place.
– Could even be a multi-way tie.



Exhaustive 
Search

• Without working too hard, we can find an algorithm that 
lists all possible alignments between two sequences.

– It is a finite number.

• If we do that and calculate the alignment score for each 
one as we go, we can be sure to find all optimal 
alignments.

• This is called an “exhaustive search” algorithm, also 
known as solving the problem by “brute force”.



Very Large Search Space

• The number of possible alignments grows 
quickly with sequence length.

– For two sequences of length 11, there 
are 705,432 possible alignments.

• For sequences of length 10,000 the 
number is astronomical.

– And biological sequences get a lot 
longer than that.



Efficient 
Algorithms

• Since there are so many possible alignments, 
an exhaustive search for the optimal one(s) 
is not practical.

–  Instead, we need a clever algorithm to 
find them in finite time.

• The first algorithm to achieve this was 
published in 1970 and exploits a technique 
known as ‘dynamic programming’.

• Dynamic programming has nothing to do 
with ‘programming’ it is more closely related 
to mathematical induction.



Needleman-Wunsch

• Suppose we seek the optimal alignment 
between the following two sequences.

• The score will count +1 for each match 
and -1 for each mismatch or indel.

• Remember: Optimal means an alignment 
with highest possible score.

– And there may not be one unique 
such alignment, there may be a multi-
way tie for first-place.



Needleman-
Wunsch Put the two sequences 

in a table like this

G G A T C C G

G

A

T

T

A

C

A



Encoded 
Alignment

• A path from the bottom right cell to the top 
left encodes a particular alignment.

• Diagonal arrow: match

• Vertical arrow: indel in the first 
(horizontal) sequence

• Horizontal arrow: indel in the 
second (vertical) sequence.



Encoded Alignments

• There’s a one-to-one correspondence 
between paths through the table and 
alignments.

– Subject to one restriction: an indel is 
not allowed to align with an indel.

• How do we find the path(s) that 
represents alignment(s) with the highest 
possible score?

– Note that it might not be unique, 
there could be more than one 
optimal alignment.



Filling in the Table
• We fill in the table with the best possible score of 

an alignment up to that point in both sequences.

G G A T C C G

G

A

T

T

A X

C

A

• So, for example, the 
cell labeled X has the 
optimal score of an 
alignment between 
GG and GATTA



Filling in the Table
• The entries in the first row and first column are 

obvious.

• We proceed from 
here by filling in new 
cells for which three 
adjacent cells are 
already filled in: 
– The one above
– The one to the left
– The one at the upper 

left diagonal



Filling in the Table
• There’s only one such entry in the table so far, 

the one marked with an X.

• There are three ways 
to get to this cell.

– From the left

– From above

– From the diagonal

• In each case we 
compute the running 
score.



Filling in the Table

• If we come from the diagonal, the contribution to the 
score is +1 or -1 depending on whether the letters 
match.

• If we come from above or 
from the left, the only 
contributor to the score is 
one indel.  So, we add -1 
to the running score.

• The three possibilities for 
X then are:
– Diagonal: 0 + 1 = 1

– From the Left: -1 -1 = -2

– From above: -1 -1 = -2



Filling in the Table

• The winner is the Diagonal with +1.



Filling in the Table
• Let’s do one more, the one labeled X.

• This is another match, 
G against G.

• So, the three 
possibilities are:

– Diagonal: -1 +1 = 0

– From the Left: 1 - 1 = 0

– From Above: -2 - 1 = -3



Filling in the Table
• It’s a tie.

• In this case we draw 
both arrows.

• If the traceback 
passes through this 
cell, then there will 
be more than one 
optimal alignment.



Smaller Example
• It would take an hour to fill in that whole table 

by hand.

• So, let’s work a very simple example.

• GC aligned to GAC

G C

G

A

C



Filling in the Table

• The cell in marked with an X 
represents a match:
– G in the row and G in the 

column. 

• So, this adds +1 to the score.
– Diagonal: 0 + 1 = 1

– From the Left: -1 -1 = -2

– From Above: -1 -1 = -2

• The maximum is +1 
(coming from the diagonal 
direction).



Filling in the Table

• We annotate the 
table like this, 
keeping track of the 
direction that 
achieved the 
maximum.



Filling in the Table

• Next fill in the cell labeled X.

• Here the cell represents a 
mismatch G in the row to C in 
the column. 

• So, this adds -1 to the score.

• The three directions give:

– Diagonal: -1-1=-2

– Left: 1-1=0

– Above: -2-1=-3

• The maximum = 0 and comes 
from the left direction.



Filling in the Table

• We annotate the 
table like this.



Filling in the Table

• The cell marked with 
an x is the only one 
that can be filled in 
next.

• This cell represents a 
mismatch G in the 
column and A in the 
row.



Filling in the Table

• Since it’s a mismatch, it 
adds -1 to the score.

• The three directions 
give:

– Diagonal: -1-1=-2

– Left: -2-1=-3

– Above: 1-1=0

• The smallest is 1-1=0 
coming from the cell 
above.



Filling in the Table

• That gets us here.

• Recall each cell 
contains the 
maximum of three 
numbers.



Filling in the Table

• Filling in the remaining 
cells gives this.

• The value in the 
bottom right cell gives 
the optimal score of 1.

• Tracing back will give us 
the actual alignment.



Tracing Back

• Start at the bottom right 
cell.

• This cell was reached by 
a diagonal arrow, so that 
means match/mismatch 
(as opposed to indel).

• This gets us here:

                      C

                      C



Tracing Back

• Follow the arrow to the 
cell circled in red.

• It was a vertical arrow 
that got us to this cell, 
so that’s an indel.

• That gets us to here:

                     - C

                     A C



Tracing Back

• Follow the arrow to the 
cell circled in red.

• It was a diagonal arrow 
that got us to this cell, so 
that’s a match/mismatch.

• That gets us to here:

                   G  - C

                   G A C



Other Scoring Schemes

• In DNA, an A is more likely to mutate 
into a G than to a T.

• And any substitution is more likely than 
an indel.

• An indel of length 2 is not twice as 
unlikely as one of length 1.

• These facts argue for a more 
complicated scoring scheme.



Example where Score Matters
• Suppose we are to align ACGT with AGCT

• Consider two possible alignments:

• Scoring Scheme 1:
– Match: +3, Mismatch: -3, Indel: -2

– Alignment #1 score = 0, Alignment #2 score = 5

• Scoring Scheme 2:
– Match: +3, Mismatch: -3, Indel: -5

– Alignment #1 score = 0, Alignment #2 score = -1

• For scoring scheme #1, Alignment #2 is better.

• For scoring scheme #2, Alignment #1 is better.



Linear Gap 
Penalties

Using this scheme does not complicate 
Needleman-Wunsch.

In this scoring scheme, larger numbers are 
better.

Think of the indel part of the score as -2K for a gap of 
length K.

This is called an ‘linear gap penalty’ since it 
grows proportionally with the length.



Affine Gap Penalties

As we noted, it’s less likely to start 
a gap than to extend one.

A linear gap penalty does not capture 
this.

A more general system that does capture this is to score -2 - K for a 
gap of length K+1.

Again, larger numbers are better.
This is called an ‘affine gap penalty’.

The penalty to initiate a gap (-2) is less than 
the penalty to extend it by a base (-1).

Using this scheme does complicate Needleman-Wunsch, because the 
value in a cell no longer depends on just the three neighbors.



Substitution Matrices
• In general, the substitution of one base for 

another can be different for each pair of 
nucleotides.  In this case we can specify them 
in a so-called “substitution matrix”

• In this example 
substitutions of purines 
and pyrimidines are 
penalized greater than 
purines with purines or 
pyrimidines with 
pyrimidines.



Algorithmic 
Complexity

• Computers are fast, so why do 
we need to be clever 
anymore? 

• Why not just write a program 
to do an exhaustive search 
through all alignments, to find 
the optimal ones?

• Unfortunately, computers are 
not that fast.

• An exhaustive search for 
sequences of length 1000 
would take to the end of the 
universe.



Complexity

• Even if we’re just aligning 
short sequences, we often 
must do it millions of times 
in a row.

– For example, a high-
throughput sequencing 
experiment can produce 
100,000,000 sequence reads, 
which all need to be aligned 
to the (very large) genome.

• We need a way of 
characterizing the 
efficiency of an algorithm, 
so we can determine which 
of two proposed 
algorithms is faster.



Big O
• Let f(t) be a function of time, where 𝑡 ≥ 0.

• Let g(t) be another function of time, 𝑡 ≥ 0.

• We say “f is big O of g” if the limit

lim
𝑡→∞

𝑓(𝑡)

𝑔(𝑡)
     is finite.

– We write f = O(g).

• More generally, we require that there exists positive constants M and N such that

ൗ𝑓(𝑡)
𝑔(𝑡) < M for all 𝑡 > 𝑁

– For example, f(t) = cos(t), g(t) = 1.  The limit does not exist, but cos(t) is still big O 
of 1.



Example

Let f(t) = t3+4t+6

Then f is big O of t3

In fact, f is big O of tn for any n>3.

Meanwhile f is not big O of t2.

f(t)/t2 = t + 4/t + 6/t2  → ꚙ



It’s not really 
about time

• The time variable t can really be any 
parameter that takes values in [𝑎,∞) for 
some 𝑎.

– For our purposes we’ll replace t with n, the 
length of the larger of the two sequences to 
be aligned.

• And let f(n) be the number of operations 
required to perform an alignment.

• If f is big O of n, then doubling the length of 
the sequences being aligned only doubles 
the number of operations required.

• To date nobody has found an algorithm that 
is that fast and it’s probably been proven 
impossible.



Complexity of 
Alignment

• If an algorithm is big O of n2 then doubling 
the length of the sequences increases the 
number of operations by four-fold.

• This may sound problematic, but quadratic 
growth is usually considered good.

• What you really don’t want is the algorithm 
to be no better than big O of 2n.

• That’s exponential growth that gets out of 
hand very quickly.



High 
Complexity 
Problems

• If a problem has exponential complexity, or does not have 
polynomial complexity of a reasonably low degree

– then it may simply be impractical to use an algorithm 
that guarantees an optimal solution.

• Consider for example the problem of aligning not just two 
sequences but N sequences in a so-called multiple 
sequence alignment.

– This problem gets out of hand very fast.



Heuristics

• Therefore, often algorithms are 
developed that do not 
guarantee to find an optimal 
solution but at least find one 
that is reasonably close.

• Sometimes we can quantify 
how close, and sometimes we 
just proceed on faith.

• We will encounter numerous 
heuristic algorithms in this 
class.



Complexity 
of 

Needleman-
Wunsch

• Without going into too much detail, notice 
how the Needleman-Wunsch algorithm 
requires filling in a table.

• If the sequences both have length n, then 
the table has on the order of n2 cells.
–  (n+1)2 is “on the order of” n2, that just 

means they’re both big O of each other.

• It takes at least four operations to populate 
one cell:
– Compute three numbers and take the 

maximum.

• But notice how that number of operations 
is basically constant, it’s the same for all 
cells.



Complexity 
of 

Needleman-
Wunsch

• Suppose it takes f(n) operations 
to align two sequences of 
length n by Needleman-
Wunsch.

• Suppose there are k operations 
involved in populating one cell, 
and that’s the same k for all 
cells.

•  You should be able to convince 
yourself, at least intuitively, that 
f is big O of n2 and in fact

lim
𝑛→∞

𝑓(𝑛)

𝑛2
→ 𝑘



Complexity of 
Needleman-

Wunsch with a 
Linear Gap 

Penalty

• If we use a linear gap penalty, then it 
requires more operations per cell.

• But that does not necessarily mean the 
complexity increases beyond O(n2).

• For each cell one may need to maintain 
the length of the current gap.

– But the number of operations per cell 
is still constant.

– So, it’s still O(n2) just with a higher 
limiting constant.
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