
Introduction to
Bioinformatics

Gregory R. Grant
Genetics Department
ggrant@pennmedicine.upenn.edu

ITMAT Bioinformatics Laboratory

University of Pennsylvania

Lecturer

Gregory R. Grant

Lecture Five

Nucleic Acid, Sequencing

Basics, Alignment

Teaching Assistants

Chetan Vadali

Jianing Yang

Fall 2023

mailto:ggrant@pennmedicine.upenn.edu

Nucleic Acid

• There are two major classes:

– DNA

– RNA

• DNA is typically double-stranded, RNA is typically
single-stranded.

– However, like everything in biology, there are exceptions.

• Here we care very little about the chemistry and
physics of these molecules.

• What we really care about is its ‘sequence’

• Nucleic Acids form the primary
information-carrying molecules in a cell.

Sequence

• A single strand of DNA is a molecule that
is constructed from four different
‘nucleotides’ connected linearly.

• We abbreviate the four nucleotides A, C,
G and T

– adenine, cytosine, guanine and thymine

• Therefore, as far as we’re concerned, a
strand of DNA is just one long word
written in four letters.

• These words encode most of the
information it takes to make an organism.

DNA Double Helix

• DNA typically has two strands.

• But one strand uniquely determines the
other.

– A only pairs with T

– C only pairs with G.

Terminology
• A “String”, or “Sequence” is an ordered list of

letters, or numbers.

• A “Substring” of a string is a contiguous
sequence of characters from the string

• A “Subsequence” of a string is sequence derived
from another sequence by deleting some
elements without changing the order of the
remaining elements

 AGACTATCTACAATTGT - string

 CTATCTA - substring

 AGA TATC AATT - subsequence

DNA

• DNA is somewhat passive, like a book.

–Same in every cell.

– Interacts with environment by being
“read”.

• Also known as “transcription”.

–DNA consists of just a few very long
sequences, called ‘chromosomes’, which
are tens to hundreds of millions of bases
each.

Genes

Some RNA are translated into protein, in which
case RNA is just a transfer of information from
DNA to the protein assembly machinery.

The protein coding part is a subsequence of the
gene.

• Consisting just of exons

The corresponding RNA are called mRNA, ‘m’ for
‘messenger’

All other RNA are called ‘non-coding’.

most non-coding RNA are ‘regulatory’.

Some non-coding RNA are ‘structural’ and
form components of complexes.

Non-coding RNA comes in all sizes, from
microRNA of ~20 bases to long intergenic
RNA (lincRNA) which can be thousands of
bases

“Genes” are substrings of chromosomes

that get copied into RNA, which then go

off and do something.

Sequencing

• The structure of DNA
was discovered (exactly)
70 years ago (1953).

• Since then, our ability to read DNA sequences has
progressed steadily.

• In the 1970’s “Sanger Sequencing” was developed
which made sequencing routine for the first time.

– They gave Sanger his second Nobel Prize for this.

– But it was still relatively low throughput and expensive.

The Human Genome
• Using Sanger Sequencing it took more than 10 years and

billions of dollars to sequence a first rough draft of the
human genome.

– 3,200,000,000 nucleotides.

• So-called “Next Generation
Sequencing” (NGS) was
developed in the early 2000’s
and by 2010 was already in
widespread use.

– They also call it “High Throughput Sequencing” (HTS).

• We can now sequence a human genome in a weekend
for a couple thousand dollars.

Length Limitations of Sequencing
Methods

• A typical DNA molecule is 100 million nucleotides.

• We hope one day to be able to read such a long (single)
molecule from end to end.

– But right now, we’re not even close.

• TERMINOLOGY: A contiguous segment of sequence
output by a sequencing machine is called a “READ”

– Sanger sequencing produces reads on the order of
500 bases.

– NGS reads are closer to 150 bases.

• 125-150 is routine, though it can be pushed to
over 250 now.

– Longer read technologies are maturing, but they still
have issues limiting their practical application.

Short vs. Long Read
Technology

• There are platforms that produce
reads on the order of thousands of
bases.

– Two platforms currently offer this:
Pacific Biosciences and Oxford
Nanopore

• But they have very high error rates, on
the order of 15%.

• One company, Illumina, has a near
monopoly in the short-read market.

– Therefore, we will focus on
Illumina short-read data

Shotgun Sequencing

• In order to sequence a long molecule, it
is first fragmented into small pieces on
the order of 200 – 500 bases.

• Then for each fragment, only about 100-
150 bases are read, typically from both
ends.

• When sequencing a transcript, the raw data
consists of just the red parts in the figure.

• For technical reasons, reads don’t (usually) go all the way to
the very end of the fragments.
– But usually close to it.

– We’ll see why in a later lecture

Assembly

• Once we have the
(millions of) reads,
then comes the hard
part.

• Assembling them back
into the full original
sequence by
identifying overlapping
reads and glue them
together into longer
and longer “contigs”.

Shotgun Sequencing

The Human Genome Project
• They started with a

hierarchical strategy.

• First divide the genome
into large pieces (on the
order of hundreds of
thousands of bases each)
– Called BAC’s (Bacterial

Artificial Chromosomes)

– We know how BAC’s fit
together to make a
chromosome.

• Then use shotgun
sequencing on each BAC
to determine its
sequence.

Whole Genome Shotgun

• Around 2000 a debate started.
– Gene Myers versus Phil Green

• Some were saying skip the BAC step and go straight to whole
genome shotgun.

• The whole genome advocates prevailed, and the government
changed approach.

From Reads to Analyzable data

• Sequencing genomes is just
one of many things you can
do with NGS.
– It’s the bioinformatician’s job

to piece together the
disconnected information
(reads) to accomplish
whatever is the goal at hand.

• Given the fast pace of technology these days, method
developers are always up against a fast-moving target.
– You may spend years developing a method, only to find it’s obsolete

before you even publish it.

– For example, whole companies and careers were destroyed when
sequencing replaced microarrays around 2010.

Example Analysis Pipeline

Example Applications of NGS

• To sequence the DNA of a new species, the
job is to assemble reads (puzzle-like) into a
full genome.

• If we’re sequencing DNA of an already
sequenced species (e.g., human) then the
job might be to determine single
nucleotide polymorphisms.

– Single base differences with respect to
the original reference genome.

• If we’re sequencing RNA the job might be
to identify which gene a read came from.

– To assess gene structure, or the
expression level of that gene.

Alignment

• In every case we must employ sequence alignment.

• “Sequence alignment” is a broad term which comes in many flavors.

• But at its most basic, we align two sequences, that we assume are related

– Perhaps one is a subsequence of the other, or

– Perhaps both are descended from a common ancestor sequence.

• We align to represent this relationship.

Evolution
of

Sequences

Consider the following sequence:
 AGATTACAGAT

Depending on many factors, this
sequence will mutate over time.

• If it’s not a particularly important part of
the genome, then it may just drift
randomly.

• If it is extremely important, then it may
strongly resist mutations.

We identify three basic mutations
that can modify the sequence.

Substitutions

• Substitutions happen when one
nucleotide changes into another.

 AGATTACAGAT

 AGATAACAGAT

• If this happens in the protein coding
part of a gene, it may (or may not)
change the protein itself.

• Even if it doesn’t alter the protein, it
could alter how it is regulated.

• Or it may simply do nothing.

Insertions

• An Insertion happened when a
new base, or bases, are inserted
between two neighboring bases.

• For example, if this sequence

 AGATTACAGAT

 evolves into this one

 AGATTCACAGAT

• If this happens in a protein
coding gene, it can have massive
consequences since it potentially
changes the codon for every
amino acid to follow.

Deletions

• A Deletion happened when a
base, or bases, are deleted.

• For example, when this sequence

 AGATTACAGAT

 mutates into this one

 AGATTCAGAT

• This again can have a massive
impact on a protein coding gene.

Insertions
and

Deletions of
multiple

bases

• Insertions and deletions can involve
more than one base in a row.

• For example,

 AGATTACAGAT

 could evolve into

 AGATAGAT

• Since codons consist of three
nucleotides, a deletion of a triple usually
has a much less dramatic impact on a
protein.

Terminology

Directionality

• Suppose we have two sequences in two
different species that differ by one
base.

 AGATTACAGAT (human)

 AGATTTCAGAT (mouse)

– Assume we know these two
sequences are related.

• What we don’t know is which one was
the ancestral sequence and which
species experienced the mutation.

• Could be the common ancestor had an
A that mutated into a T in the line to
humans. Or it could be the other way
around.

– It could even be the result of two
mutations.

Alignment

• We represent the
evolutionary relationship
with an “alignment”

 AGATTACAGAT

 | | | | | | | | | |

 AGATAACAGAT

• When there are only
substitutions, like this, it’s
not complicated.

Indels

• When there are insertions or
deletions, it’s represented like this

 AGATTACAGAT Sequence #1

 | | | | | | | |

 AGAT- - - AGAT Sequence #2

• Since we do not know if it was an
insertion in Sequence #1 or a deletion
in sequence #2 that resulted in this, we
use the term ‘indel’

Indel/Indel

• When we construct alignments, we
specifically avoid aligning an indel with
another indel because there’s no
information added by doing that.

• In other words, we do not make
alignments like this:

 AG-CTC

 | ||

 AC-CTG

• The indel/indel might as well be
removed:

 AGCTC

 | ||

 ACCTG

Point of Confusion
• We need a term for something that’s not an indel.

– And the agreed upon term is to call it a ‘match’

• But this introduces a point of confusion.

– Sometimes ‘match’ simply means not an indel.

– And other times ‘match’ means the two things are
equal.

• For example, consider the first position in the
following, where A is aligned to C.

• In one context we call this a match because it’s not an
indel.

• In another context we call this a mismatch because
they’re not equal.

– It should be clear from context.

Example Alignment

• Alignment
between a
human and
mouse gene.

– Query = Mouse

– Sbjct = Human

• Notice that the
coordinates go
up in the query,
but down in the
Subject.

Optimal Alignment

• How do we know we have the “correct”
alignment?
– We don’t and usually we cannot know for sure.

• Instead, we look for the alignment that’s
“best” in some mathematical sense.
– On the assumption that a judiciously chosen

mathematical criteria can reflect reality closely
enough to serve practical purposes.

• In other words, we will find a way to ‘score’ an
alignment so that better alignments have
better scores.
– Then we search for an algorithm that finds the

alignment with the best possible score.

Edit Distance
• There are many ways to score an alignment.

The simplest is the so-called ‘edit distance’.

• The edit distance adds one for each single
nucleotide substitution and one for each single
nucleotide indel.

• Smaller edit distances are better.

 ACATTACAGAT Sequence #1

 | | | | | | |

 AGAT- - - AGAT Sequence #2

• Edit Distance = 4

Scoring
Schemes

In what follows we will use scores, not edit distances.

Indels are penalized greater than mismatches.

Larger scores are better

A more flexible alternative to the edit distance is to
involve negative numbers.

E.g., +1 for a match, -1 for a mismatch and -2 for an indels.

Sequence
Alignment
Algorithms

• Given a scoring scheme, an
alignment algorithm finds an
alignment with the best possible
score.

• We say “an” optimal alignment
because there may be a tie for first
place.
– Could even be a multi-way tie.

Exhaustive
Search

• Without working too hard, we can find an algorithm that
lists all possible alignments between two sequences.

– It is a finite number.

• If we do that and calculate the alignment score for each
one as we go, we can be sure to find all optimal
alignments.

• This is called an “exhaustive search” algorithm, also
known as solving the problem by “brute force”.

Very Large Search Space

• The number of possible alignments grows
quickly with sequence length.

– For two sequences of length 11, there
are 705,432 possible alignments.

• For sequences of length 10,000 the
number is astronomical.

– And biological sequences get a lot
longer than that.

Efficient
Algorithms

• Since there are so many possible alignments,
an exhaustive search for the optimal one(s)
is not practical.

– Instead, we need a clever algorithm to
find them in finite time.

• The first algorithm to achieve this was
published in 1970 and exploits a technique
known as ‘dynamic programming’.

• Dynamic programming has nothing to do
with ‘programming’ it is more closely related
to mathematical induction.

Needleman-Wunsch

• Suppose we seek the optimal alignment
between the following two sequences.

• The score will count +1 for each match
and -1 for each mismatch or indel.

• Remember: Optimal means an alignment
with highest possible score.

– And there may not be one unique
such alignment, there may be a multi-
way tie for first-place.

Needleman-
Wunsch Put the two sequences

in a table like this

G G A T C C G

G

A

T

T

A

C

A

Encoded
Alignment

• A path from the bottom right cell to the top
left encodes a particular alignment.

• Diagonal arrow: match

• Vertical arrow: indel in the first
(horizontal) sequence

• Horizontal arrow: indel in the
second (vertical) sequence.

Encoded Alignments

• There’s a one-to-one correspondence
between paths through the table and
alignments.

– Subject to one restriction: an indel is
not allowed to align with an indel.

• How do we find the path(s) that
represents alignment(s) with the highest
possible score?

– Note that it might not be unique,
there could be more than one
optimal alignment.

Filling in the Table
• We fill in the table with the best possible score of

an alignment up to that point in both sequences.

G G A T C C G

G

A

T

T

A X

C

A

• So, for example, the
cell labeled X has the
optimal score of an
alignment between
GG and GATTA

Filling in the Table
• The entries in the first row and first column are

obvious.

• We proceed from
here by filling in new
cells for which three
adjacent cells are
already filled in:
– The one above
– The one to the left
– The one at the upper

left diagonal

Filling in the Table
• There’s only one such entry in the table so far,

the one marked with an X.

• There are three ways
to get to this cell.

– From the left

– From above

– From the diagonal

• In each case we
compute the running
score.

Filling in the Table

• If we come from the diagonal, the contribution to the
score is +1 or -1 depending on whether the letters
match.

• If we come from above or
from the left, the only
contributor to the score is
one indel. So, we add -1
to the running score.

• The three possibilities for
X then are:
– Diagonal: 0 + 1 = 1

– From the Left: -1 -1 = -2

– From above: -1 -1 = -2

Filling in the Table

• The winner is the Diagonal with +1.

Filling in the Table
• Let’s do one more, the one labeled X.

• This is another match,
G against G.

• So, the three
possibilities are:

– Diagonal: -1 +1 = 0

– From the Left: 1 - 1 = 0

– From Above: -2 - 1 = -3

Filling in the Table
• It’s a tie.

• In this case we draw
both arrows.

• If the traceback
passes through this
cell, then there will
be more than one
optimal alignment.

Smaller Example
• It would take an hour to fill in that whole table

by hand.

• So, let’s work a very simple example.

• GC aligned to GAC

G C

G

A

C

Filling in the Table

• The cell in marked with an X
represents a match:
– G in the row and G in the

column.

• So, this adds +1 to the score.
– Diagonal: 0 + 1 = 1

– From the Left: -1 -1 = -2

– From Above: -1 -1 = -2

• The maximum is +1
(coming from the diagonal
direction).

Filling in the Table

• We annotate the
table like this,
keeping track of the
direction that
achieved the
maximum.

Filling in the Table

• Next fill in the cell labeled X.

• Here the cell represents a
mismatch G in the row to C in
the column.

• So, this adds -1 to the score.

• The three directions give:

– Diagonal: -1-1=-2

– Left: 1-1=0

– Above: -2-1=-3

• The maximum = 0 and comes
from the left direction.

Filling in the Table

• We annotate the
table like this.

Filling in the Table

• The cell marked with
an x is the only one
that can be filled in
next.

• This cell represents a
mismatch G in the
column and A in the
row.

Filling in the Table

• Since it’s a mismatch, it
adds -1 to the score.

• The three directions
give:

– Diagonal: -1-1=-2

– Left: -2-1=-3

– Above: 1-1=0

• The smallest is 1-1=0
coming from the cell
above.

Filling in the Table

• That gets us here.

• Recall each cell
contains the
maximum of three
numbers.

Filling in the Table

• Filling in the remaining
cells gives this.

• The value in the
bottom right cell gives
the optimal score of 1.

• Tracing back will give us
the actual alignment.

Tracing Back

• Start at the bottom right
cell.

• This cell was reached by
a diagonal arrow, so that
means match/mismatch
(as opposed to indel).

• This gets us here:

 C

 C

Tracing Back

• Follow the arrow to the
cell circled in red.

• It was a vertical arrow
that got us to this cell,
so that’s an indel.

• That gets us to here:

 - C

 A C

Tracing Back

• Follow the arrow to the
cell circled in red.

• It was a diagonal arrow
that got us to this cell, so
that’s a match/mismatch.

• That gets us to here:

 G - C

 G A C

Other Scoring Schemes

• In DNA, an A is more likely to mutate
into a G than to a T.

• And any substitution is more likely than
an indel.

• An indel of length 2 is not twice as
unlikely as one of length 1.

• These facts argue for a more
complicated scoring scheme.

Example where Score Matters
• Suppose we are to align ACGT with AGCT

• Consider two possible alignments:

• Scoring Scheme 1:
– Match: +3, Mismatch: -3, Indel: -2

– Alignment #1 score = 0, Alignment #2 score = 5

• Scoring Scheme 2:
– Match: +3, Mismatch: -3, Indel: -5

– Alignment #1 score = 0, Alignment #2 score = -1

• For scoring scheme #1, Alignment #2 is better.

• For scoring scheme #2, Alignment #1 is better.

Linear Gap
Penalties

Using this scheme does not complicate
Needleman-Wunsch.

In this scoring scheme, larger numbers are
better.

Think of the indel part of the score as -2K for a gap of
length K.

This is called an ‘linear gap penalty’ since it
grows proportionally with the length.

Affine Gap Penalties

As we noted, it’s less likely to start
a gap than to extend one.

A linear gap penalty does not capture
this.

A more general system that does capture this is to score -2 - K for a
gap of length K+1.

Again, larger numbers are better.
This is called an ‘affine gap penalty’.

The penalty to initiate a gap (-2) is less than
the penalty to extend it by a base (-1).

Using this scheme does complicate Needleman-Wunsch, because the
value in a cell no longer depends on just the three neighbors.

Substitution Matrices
• In general, the substitution of one base for

another can be different for each pair of
nucleotides. In this case we can specify them
in a so-called “substitution matrix”

• In this example
substitutions of purines
and pyrimidines are
penalized greater than
purines with purines or
pyrimidines with
pyrimidines.

Algorithmic
Complexity

• Computers are fast, so why do
we need to be clever
anymore?

• Why not just write a program
to do an exhaustive search
through all alignments, to find
the optimal ones?

• Unfortunately, computers are
not that fast.

• An exhaustive search for
sequences of length 1000
would take to the end of the
universe.

Complexity

• Even if we’re just aligning
short sequences, we often
must do it millions of times
in a row.

– For example, a high-
throughput sequencing
experiment can produce
100,000,000 sequence reads,
which all need to be aligned
to the (very large) genome.

• We need a way of
characterizing the
efficiency of an algorithm,
so we can determine which
of two proposed
algorithms is faster.

Big O
• Let f(t) be a function of time, where 𝑡 ≥ 0.

• Let g(t) be another function of time, 𝑡 ≥ 0.

• We say “f is big O of g” if the limit

lim
𝑡→∞

𝑓(𝑡)

𝑔(𝑡)
 is finite.

– We write f = O(g).

• More generally, we require that there exists positive constants M and N such that

ൗ𝑓(𝑡)
𝑔(𝑡) < M for all 𝑡 > 𝑁

– For example, f(t) = cos(t), g(t) = 1. The limit does not exist, but cos(t) is still big O
of 1.

Example

Let f(t) = t3+4t+6

Then f is big O of t3

In fact, f is big O of tn for any n>3.

Meanwhile f is not big O of t2.

f(t)/t2 = t + 4/t + 6/t2 → ꚙ

It’s not really
about time

• The time variable t can really be any
parameter that takes values in [𝑎,∞) for
some 𝑎.

– For our purposes we’ll replace t with n, the
length of the larger of the two sequences to
be aligned.

• And let f(n) be the number of operations
required to perform an alignment.

• If f is big O of n, then doubling the length of
the sequences being aligned only doubles
the number of operations required.

• To date nobody has found an algorithm that
is that fast and it’s probably been proven
impossible.

Complexity of
Alignment

• If an algorithm is big O of n2 then doubling
the length of the sequences increases the
number of operations by four-fold.

• This may sound problematic, but quadratic
growth is usually considered good.

• What you really don’t want is the algorithm
to be no better than big O of 2n.

• That’s exponential growth that gets out of
hand very quickly.

High
Complexity
Problems

• If a problem has exponential complexity, or does not have
polynomial complexity of a reasonably low degree

– then it may simply be impractical to use an algorithm
that guarantees an optimal solution.

• Consider for example the problem of aligning not just two
sequences but N sequences in a so-called multiple
sequence alignment.

– This problem gets out of hand very fast.

Heuristics

• Therefore, often algorithms are
developed that do not
guarantee to find an optimal
solution but at least find one
that is reasonably close.

• Sometimes we can quantify
how close, and sometimes we
just proceed on faith.

• We will encounter numerous
heuristic algorithms in this
class.

Complexity
of

Needleman-
Wunsch

• Without going into too much detail, notice
how the Needleman-Wunsch algorithm
requires filling in a table.

• If the sequences both have length n, then
the table has on the order of n2 cells.
– (n+1)2 is “on the order of” n2, that just

means they’re both big O of each other.

• It takes at least four operations to populate
one cell:
– Compute three numbers and take the

maximum.

• But notice how that number of operations
is basically constant, it’s the same for all
cells.

Complexity
of

Needleman-
Wunsch

• Suppose it takes f(n) operations
to align two sequences of
length n by Needleman-
Wunsch.

• Suppose there are k operations
involved in populating one cell,
and that’s the same k for all
cells.

• You should be able to convince
yourself, at least intuitively, that
f is big O of n2 and in fact

lim
𝑛→∞

𝑓(𝑛)

𝑛2
→ 𝑘

Complexity of
Needleman-

Wunsch with a
Linear Gap

Penalty

• If we use a linear gap penalty, then it
requires more operations per cell.

• But that does not necessarily mean the
complexity increases beyond O(n2).

• For each cell one may need to maintain
the length of the current gap.

– But the number of operations per cell
is still constant.

– So, it’s still O(n2) just with a higher
limiting constant.

	Slide 1: Introduction to Bioinformatics
	Slide 2: Nucleic Acid
	Slide 3: Sequence
	Slide 4: DNA Double Helix
	Slide 5: Terminology
	Slide 6: DNA
	Slide 7: Genes
	Slide 8: Sequencing
	Slide 9: The Human Genome
	Slide 10: Length Limitations of Sequencing Methods
	Slide 11: Short vs. Long Read Technology
	Slide 12: Shotgun Sequencing
	Slide 13
	Slide 14: Assembly
	Slide 15: The Human Genome Project
	Slide 16: Whole Genome Shotgun
	Slide 17: From Reads to Analyzable data
	Slide 18: Example Applications of NGS
	Slide 19: Alignment
	Slide 20: Evolution of Sequences
	Slide 21: Substitutions
	Slide 22: Insertions
	Slide 23: Deletions
	Slide 24: Insertions and Deletions of multiple bases
	Slide 25: Terminology
	Slide 26: Directionality
	Slide 27: Alignment
	Slide 28: Indels
	Slide 29: Indel/Indel
	Slide 30: Point of Confusion
	Slide 31: Example Alignment
	Slide 32: Optimal Alignment
	Slide 33: Edit Distance
	Slide 34: Scoring Schemes
	Slide 35: Sequence Alignment Algorithms
	Slide 36: Exhaustive Search
	Slide 37: Very Large Search Space
	Slide 38: Efficient Algorithms
	Slide 39: Needleman-Wunsch
	Slide 40: Needleman-Wunsch
	Slide 41: Encoded Alignment
	Slide 42: Encoded Alignments
	Slide 43: Filling in the Table
	Slide 44: Filling in the Table
	Slide 45: Filling in the Table
	Slide 46: Filling in the Table
	Slide 47: Filling in the Table
	Slide 48: Filling in the Table
	Slide 49: Filling in the Table
	Slide 50: Smaller Example
	Slide 51: Filling in the Table
	Slide 52: Filling in the Table
	Slide 53: Filling in the Table
	Slide 54: Filling in the Table
	Slide 55: Filling in the Table
	Slide 56: Filling in the Table
	Slide 57: Filling in the Table
	Slide 58: Filling in the Table
	Slide 59: Tracing Back
	Slide 60: Tracing Back
	Slide 61: Tracing Back
	Slide 62: Other Scoring Schemes
	Slide 63: Example where Score Matters
	Slide 64: Linear Gap Penalties
	Slide 65: Affine Gap Penalties
	Slide 66: Substitution Matrices
	Slide 67: Algorithmic Complexity
	Slide 68: Complexity
	Slide 69: Big O
	Slide 70: Example
	Slide 71: It’s not really about time
	Slide 72: Complexity of Alignment
	Slide 73: High Complexity Problems
	Slide 74: Heuristics
	Slide 75: Complexity of Needleman-Wunsch
	Slide 76: Complexity of Needleman-Wunsch
	Slide 77: Complexity of Needleman-Wunsch with a Linear Gap Penalty

