Department of Biology
TITMAT

Introduction to ioinformatics

Bioinformatics

| colin Lecture Five
Gregory R. Grant Nucleic Acid, Sequencing
Basics, Alignment

Fall 2023

Gregory R. Grant

Teaching Assistants Genetics Department

Chetan Vadali gorant@pennmedicine.upenn.edu
Jianing Yang

mailto:ggrant@pennmedicine.upenn.edu

Nucleic Acid

Nucleic Acids form the primary
information-carrying molecules in a cell.

There are two major classes:
— DNA
— RNA

DNA is typically double-stranded, RNA is typically
single-stranded.

— However, like everything in biology, there are exceptions.

Here we care very little about the chemistry and
physics of these molecules.

What we really care about is its ‘sequence’

Sequence

A single strand of DNA is a molecule that
is constructed from four different
‘nucleotides’ connected linearly.

We abbreviate the four nucleotides A, C,
GandT

— adenine, cytosine, guanine and thymine
Therefore, as far as we’re concerned, a

strand of DNA is just one long word
written in four letters.

These words encode most of the
information it takes to make an organism.

T
G
A
C
G
T
A
T

DNA Double Helix

 DNA typically has two strands.

e But one strand uniquely determines the
other.

— Aonly pairswith T
— Conly pairs with G.

Terminology

* A “String”, or “Sequence” is an ordered list of
letters, or numbers.

e A “Substring” of a string is a contiguous
sequence of characters from the string

* A “Subsequence” of a string is sequence derived
from another sequence by deleting some
elements without changing the order of the
remaining elements

AGACTATCTACAATTGT - string
CTATCTA - substring
AGA TATC AATT - subsequence

Chromosome

DNA helix

* DNA is somewhat passive, like a book.

—Same in every cell.

backbone S

—Interacts with environment by being
“read”.

* Also known as “transcription”.

—DNA consists of just a few very long

sequences, called ‘chromosomes’, which
are tens to hundreds of millions of bases
each.

Genes

“Genes” are substrings of chromosomes
that get copied into RNA, which then go
off and do something.

Replication Translation

The protein coding part is a subsequence of the

: . : gene.
Some RNA are translated into protein, in which

case RNA is just a.transfer of mforrr?atmn from The corresponding RNA are called mRNA, “m’ for
DNA to the protein assembly machinery. ‘messenger’

e Consisting just of exons

All other RNA are called ‘non-coding’.

most non-coding RNA are ‘regulatory’.

Non-coding RNA comes in all sizes, from
Some non-coding RNA are ‘structural’ and microRNA of ~20 bases to long intergenic
form components of complexes. RNA (lincRNA) which can be thousands of
bases

Sequencing

G s’
AG 5’
CAG 5’
TCAG S’

GTCAG 5'

e The structure of DNA

was discovered (exactly) it
70 years ago (1953).

* Since then, our ability to read DNA sequences has
progressed steadily.

uerO0-H4H0>»>»00-dw

* |In the 1970’s “Sanger Sequencing” was developed
which made sequencing routine for the first time.

— They gave Sanger his second Nobel Prize for this.
— But it was still relatively low throughput and expensive.

The Human Genome

* Using Sanger Sequencing it took more than 10 years and
billions of dollars to sequence a first rough draft of the
human genome.

— 3,200,000,000 nucleotides.

e So-called “Next Generation
Sequencing” (NGS) was
developed in the early 2000’s
and by 2010 was already in
widespread use.

— They also call it “High Throughput Sequencing” (HTS).

 We can now sequence a human genome in a weekend
for a couple thousand dollars.

Length Limitations of Sequencing
Methods

A typical DNA molecule is 100 million nucleotides.

We hope one day to be able to read such a long (single)
molecule from end to end.

— But right now, we’re not even close.

TERMINOLOGY: A contiguous segment of sequence
output by a sequencing machine is called a “READ”

— Sanger sequencing produces reads on the order of
500 bases.

— NGS reads are closer to 150 bases.

* 125-150 is routine, though it can be pushed to
over 250 now.

— Longer read technologies are maturing, but they still
have issues limiting their practical application.

Chromosome

Bases

249,250,621
243,199,373
198,022,430
191,154,276
180,915,260
171,115,067
159,138,663
146,364,022
141,213,431
135,534,747
135,006,516
133,851,895
115,169,878
107,349,540

102,531,392

90,354,753

81,195,210
78,077,248
59,128,983
63,025,520
48,129,895
51,304,566
155,270,560
59,373,566

Short vs. Long Read
Technology

There are platforms that produce
reads on the order of thousands of
bases.

— Two platforms currently offer this:
Pacific Biosciences and Oxford
Nanopore

But they have very high error rates, on
the order of 15%.

One company, lllumina, has a near
monopoly in the short-read market.

— Therefore, we will focus on
lllumina short-read data

@ Short Reads
WOy

: Sequ:enE;eGapsi

Yo\

Shotgun Sequencing

* |n order to sequence a long molecule, it
is first fragmented into small pieces on
the order of 200 — 500 bases.

* Then for each fragment, only about 100-
150 bases are read, typically from both
ends.

100 bases Unsequenced part of fragment

sequenced

* When sequencing a transcript, the raw data
consists of just the red parts in the figure.

100 bases Unsequenced part of fragment 100 bases
sequenced sequenced

* For technical reasons, reads don’t (usually) go all the way to
the very end of the fragments.
— But usually close to it.
— WEe’ll see why in a later lecture

Shotgun Sequencing

Assembly

Genomic DNA

Fragmented DNA

e Once we have the
(millions of) reads,
then comes the hard

part.

 Assembling them back ooy
into the full original
seguence by

identifying overlapping
reads and glue them
together into longer
and longer “contigs”.

The Human Genome Project

b They started with a Hierarchical shotgun sequencing
hierarchical strategy.

* First divide the genome
into large pieces (on the

order of hundreds of BAC library
thousands of bases each)
Organized
— Called BAC's (Bacterial mapped large
- clone contigs
Artificial Chromosomes)
— We know how BAC’s fit BAC to be
together to make a PRt
chromosome.

Shotgun
clones

* Then use shotgun
Sequencing on each BAC Shotgun . ..ACCGTAAATGGGCTGATCATGCTTAAA

TGATCATGCTTAAACCCTGTGCATCCTACTG. . .

to dete rmine Its .. .ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG. . .

sequence.

Whole Genome Shotgun

PERSPECTIVE

Human Whole-Genome Shotgun Sequencing

James L. Weber'-* and Eugene W. Myers?

ICenter for Medical Genetics, Marshfield Medical Research Foundation, Marshfield, Wisconsin 54449;
“Department of Computer Science, University of Arizona, Tucson, Arizona 85721

Large-scale sequencing of the human genome is
now under way (Boguski et al. 1996; Marshall and
Pennisi 1996). Although at the beginning of the Ge-
nome Project, many doubted the scientific value of
sequencing the entire human genome, these doubts
have evaporated almost entirely (Gibbs 1995; Olson
1995). Primary reasons for generating the human
genomic sequence are listed in Table 1.

The approach being taken for human genomic
sequencing is the same as that used for the Saccha-
romyces cerevisiae and Caenorhabditis elegans ge-
nomes, namely construction of overlapping arrays
of large insert Escherichia coli clones, followed by
complete sequencing of these clones one at a time.
In this article, we outline an alternative approach to
sequencing the human and other large genomes,
which we argue is less costly and more informative
than the clone-by-clone approach.

Around 2000 a debate started.

would be deposited in a common, public database,
and only a few or possibly even one large informat-
ics group would assay the primary task of sequence
assembly. Following initial assembly, gaps in se-
quence coverage would need to be filled and uncer-
tainties in assembly would need to be resolved.
Sequencing from both ends of relatively long
insert subclones is an essential feature of the plan.
Initially, Edwards and colleagues (1990) and, more
recently, several other groups (Chen et al. 1993;
Smith et al. 1994; Kupfer et al. 1995; Roach et al.
1995; Nurminsky and Hartl 1996) recognized that
sequence information from both ends of relatively
long inserts dramatically improves the efficiency of
sequence assembly. In contrast to single sequence
reads from one end of shotgun subclones, the pairs
of sequence reads from both ends have known spac-
ing and orientation. Use of relatively long insert
subclones also aids in the assembly of sequences

— Gene Myers versus Phil Green

PERSPECTIVE

Against a Whole-Genome Shotgun

Philip Green’

Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195

The human genome project is entering its decisive
final phase, in which the genome sequence will be
determined in large-scale efforts in multiple labora-
tories worldwide. A number of sequencing groups
are in the process of scaling up their throughput;
over the next few years they will need to attain a
collective capacity approaching half a gigabase per
year to complete the 3-Gb genome sequence by the
target date of 2005. At present, all contributing
groups are using a clone-by-clone approach, in
which mapped bacterial clones (typically 40-400 kb
in size) from known chromosomal locations are se-
quenced to completion. Among other advantages,
this permits a variety of alternative sequencing
strategies and methods to be explored indepen-
dently without redundancy of effort. Although it is
not too late to consider implementing a different
approach, any such approach must have as high a
probability of success as the current one and offer
significant advantages (such as decreased cost). I ar-
gue here that the whole-genome shotgun proposed
by Weber and Myers satisfies neither condition.

MIT Center for Genome Research. http://fwww-
genome.wi.mit.edu], with several intensively
mapped chromosomes already exceeding it (Naga-
raja et al. 1997, Bouffard et al. 1997), and BACs av-
erage 130 kb or more in size in current libraries (Kim
et al. 1996), this STS density should be adequate to
obtain contiguous clone coverage of much of the
genome; most gaps that remain should be closable
by developing new STSs directly from the sequence
adjacent to the gap and rescreening the library.
Restriction digests are performed on the clones
obtained from the screens to determine their sizes
and extent of overlap, and to eliminate anomalous
clones, which generally have fingerprints inconsis-
tent with other clones in the group. Selected clones
are then sequenced using a two-stage strategy, con-
sisting of a shotgun phase in which a number of
reads are generated from random M13 or plasmid
subclones, followed by a directed, or “finishing”
phase. In the latter, the shotgun reads are assembled
into contigs, the assembly is inspected and tested
for correctness, additional data are collected to close
gaps and resolve low-quality regions (e.g., compres-
LIS R [T PP PRt o - i

i v, T v e

Some were saying skip the BAC step and go straight to whole
genome shotgun.

The whole genome advocates prevailed, and the government
changed approach.

From Reads to Analyzable data

* Sequencing genomes is just [| I oy
one of many things you can Rl A=)
do with NGS. L Er i [e
— It’s the bioinformatician’s job I—— b

to piece together the
disconnected information
(reads) to accomplish
whatever is the goal at hand.

Example Analysis Pipeline

* Given the fast pace of technology these days, method
developers are always up against a fast-moving target.

— You may spend years developing a method, only to find it’s obsolete
before you even publish it.

— For example, whole companies and careers were destroyed when
sequencing replaced microarrays around 2010.

Example Applications of NGS

To sequence the DNA of a new species, the
job is to assemble reads (puzzle-like) into a
full genome.

If we’re sequencing DNA of an already
sequenced species (e.g., human) then the
job might be to determine single
nucleotide polymorphisms.

— Single base differences with respect to
the original reference genome.

If we’'re sequencing RNA the job might be
to identify which gene a read came from.

— To assess gene structure, or the
expression level of that gene.

Alignment

* In every case we must employ sequence alignment.
 “Sequence alignment” is a broad term which comes in many flavors.
e But at its most basic, we align two sequences, that we assume are related
— Perhaps one is a subsequence of the other, or
— Perhaps both are descended from a common ancestor sequence.
 We align to represent this relationship.

Evolution

Of e Ifit’s not a particularly important part of
Seq uences the genome, then it may just drift

randomly.

e |f it is extremely important, then it may
strongly resist mutations.

Substitutions

Substitutions happen when one
nucleotide changes into another.

AGATTACAGAT
AGATAACAGAT

If this happens in the protein coding
part of a gene, it may (or may not)
change the protein itself.

Even if it doesn’t alter the protein, it
could alter how it is regulated.

Or it may simply do nothing.

AATCGCCGTAC

D
7T

AATCGCTGTAC

(1]

* An Insertion happened when a
new base, or bases, are inserted
between two neighboring bases.

* For example, if this sequence
AGATTACAGAT
evolves into this one
AGATTCACAGAT

* |f this happens in a protein
coding gene, it can have massive
consequences since it potentially
changes the codon for every ,
amino acid to follow.
/

a

* A Deletion happened when a
base, or bases, are deleted.

* For example, when this sequence
AGATTACAGAT

DeIEtIOnS mutates into this one

AGATTCAGAT

* This again can have a massive
impact on a protein coding gene.

* |nsertions and deletions can involve
more than one base in a row.

Insertions . For example,
3 nd AGATTACAGAT
could evolve into

Deletions of AGATAGAT

multiple

bases * Since codons consist of three
nucleotides, a deletion of a triple usually
has a much less dramatic impact on a
protein.

Terminology

early globin gene

duplication

-chain gene B-chain gene

frog-« human-a mouse- mouse-B8 human-B8 frog-B

orthologs V/

paralogs

T——

homologs

Directionality

* Suppose we have two sequences in two
different species that differ by one
base.

AGATTACAGAT (human)
AGATTTCAGAT (mouse)

— Assume we know these two
seguences are related.

* What we don’t know is which one was
the ancestral sequence and which
species experienced the mutation.

 Could be the common ancestor had an
A that mutated into a T in the line to
humans. Or it could be the other way
around.

— It could even be the result of two
mutations.

 We represent the
evolutionary relationship
with an “alignment”

AGATTACAGAT

NN EEREE
AGATAACAGAT

0
* When there are only

substitutions, like this, it’s ,
not complicated. /

a

* When there are insertions or
deletions, it’s represented like this

AGATTACAGAT Sequence #1

|11 |11
AGAT- - - AGAT Sequence #2

* Since we do not know if it was an
insertion in Sequence #1 or a deletion §
in sequence #2 that resulted in this, we
use the term ‘indel ,

/

o

 When we construct alignments, we
specifically avoid aligning an indel with
another indel because there’s no
information added by doing that.

* In other words, we do not make
alignments like this:

AG-CTC
|
AC-CTG

* The indel/indel might as well be
removed:

alclane

|1
ACCTG

Point of Confusion

We need a term for something that’s not an indel.
— And the agreed upon term is to call it a ‘match’

But this introduces a point of confusion.
— Sometimes ‘match’ simply means not an indel.

— And other times ‘match’ means the two things are
equal.

For example, consider the first position in the
following, where A is aligned to C.

In one context we call this a match because it’s not an
indel.

In another context we call this a mismatch because
they’re not equal.

— It should be clear from context.

Example Alignment

* Alignment
g Mus musculus chromosome 35, clone RP23-185N2, complete sequence
between a Sequence ID: AC113541.10 Length: 210222 Number of Matches: 1

Range 1: 29009 to 29396 GenBank

human and
mouse gene.

core X t Identities 2
248 bits(134) 3 . 324/410(7) 36/410(8%) inus

I

C
|
CaGG

ACAAAGGAGGGAAAATGAGC C gceg ET LLaLLaLUULU
I

TT|Ti

LECLLETTTTTTT T | |’[T T|

ACAAAGGAGGGAAAATGCGG

— Query = Mouse

) CEagCgCcegeECcCcgCcCecy ACGTAAACCGCCCCCGLCCGLCCAGCTGLGGLCCAGG
_ Sbict = HUMET AR i AR RR SRS
Query 121 CCGOAGCGGAGCCTGCCGTCCTCCGLLTGLC AGACCTGCGCGTC
coser oo el ALILEII TR I L0
Query 18! GCTTCCCG-GCCCGCCGAGGAGGTGGTGGAGGAGGAGGC TTTCCCCGCGGLCGLGL 19
[J Notice that the sbjct 2923 (Lé—CéGi(L'A(L'GAGlLClGlLJ!\lLlLCILlLA(|_:i(LA(LC.L(L(L.LC(L,!\(E(l'jéll'jééll'jéc'l"l'ééééééé(éééé(l 29179
. Query 246 GCCCTCGCC----GTTG--T---CTGAGCT--G- TGG TTGGGGAAGTTG 286
coordinates go Sbict 29178 é-éééHé-ééCGCctLHéTch!ﬁ'éu; IR

Query 28 AGAAGATC 346

up in the query, il T

Sbjct 29118 AGAAGATC 29859
b ut d owhn | N th e Query ATGAAGAAGTTGCGGAGAACTT TGTCGGAGAGTTTCAGTCGCAT
_ |||||||||||||||||| LECUDEEEEEREE TEEEEEErerr frer
Sbjct 290 AAGAAGT TGAGGAGAACTTTGTCCGAGAGTTTCAGCCGCAT 29009
Subject.

Optimal Alighment

How do we know we have the “correct”
alignment?
— We don’t and usually we cannot know for sure.

Instead, we look for the alignment that’s
“best” in some mathematical sense.

— On the assumption that a judiciously chosen
mathematical criteria can reflect reality closely
enough to serve practical purposes.

In other words, we will find a way to ‘score’ an
alignment so that better alignments have
better scores.

— Then we search for an algorithm that finds the
alignment with the best possible score.

® o0

Edit Distance

There are many ways to score an a
The simplest is the so-called ‘edit ¢

The edit distance adds one for eac

Ignment.
istance’.

N single

nucleotide substitution and one for each single

nucleotide indel.
Smaller edit distances are better.

ACATTACAGAT Sequence #1

AGAT- - - AGAT Sequence #2

Edit Distance = 4

E.g., +1 for a match, -1 for a mismatch and -2 for an indels.

Scoring
Schemes

Sequence
Alignment
Algorithms
Sequence Alignment Algorithm

C(0,0)—>C(0,1)—¥Cl0,3)—C(0,3)

* Given a scoring scheme, an b g b g o L
. . : cho)—c(, 1) 5,2l »c(r,3)
alignment algorithm finds an B e 1
: . . J by I
alignment with the best possible Clx,1)— C(x,a) ¥C(2,3)
score. J y

(3,1)—3C(32)— C(3,3)

 We say “an” optimal alignment
because there may be a tie for first
place.

— Could even be a multi-way tie.

Exhaustive
Search

Without working too hard, we can find an algorithm that
lists all possible alignments between two sequences.

— It is a finite number.

If we do that and calculate the alignment score for each
one as we go, we can be sure to find all optimal
alignments.

This is called an “exhaustive search” algorithm, also
known as solving the problem by “brute force”.

Very Large Search Space

* The number of possible alignments grows
quickly with sequence length.

— For two sequences of length 11, there
are 705,432 possible alignments.

* For sequences of length 10,000 the
number is astronomical.

— And biological sequences get a lot
longer than that.

Efficient
Algorithms

> Time Complexity

* Since there are so many possible alignments,
an exhaustive search for the optimal one(s)
is not practical.

— Instead, we need a clever algorithm to
find them in finite time.

2]
=
O
+—
o
%
Q.
o
=
a8
O
|

* The first algorithm to achieve this was :
published in 1970 and exploits a technique Input Size
known as ‘dynamic programming’.

* Dynamic programming has nothing to do
with ‘programming’ it is more closely related
to mathematical induction.

Needleman-Wunsch

Suppose we seek the optimal alignment
between the following two sequences.

GGATGCG
The score will count +1 for each match

and -1 for each mismatch or indel.

GATTACA

Remember: Optimal means an alignment
with highest possible score.

— And there may not be one unique
such alignment, there may be a multi-
way tie for first-place.

Needleman-
Wunsch

Put the two sequences
in a table like this

O
O
O
T
<
O
O

<
O
<
=
—
<
O

Encoded
Alignment

* A path from the bottom right cell to the top
left encodes a particular alignment.

GGATGCG

Diagonal arrow: match

Vertical arrow: indel in the first
(horizontal) sequence

Horizontal arrow: indel in the
second (vertical) sequence.

GGAT-GCG

G-ATTACA

Encoded Alighments

There’s a one-to-one correspondence
between paths through the table and
alignments.

— Subject to one restriction: an indel is
not allowed to align with an indel.

How do we find the path(s) that
represents alignment(s) with the highest
possible score?

— Note that it might not be unique,
there could be more than one
optimal alignment.

Filling in the Table

 We fill in the table with the best possible score of
an alignment up to that point in both sequences.

GIG|A|T|C| C|G

* So, for example, the
cell labeled X has the
optimal score of an
alignment between
GG and GATTA

> O[> HH P> O

Filling in the Table

e The entries in the first row and first column are
obvious.

 We proceed from
here by filling in new
cells for which three
adjacent cells are
already filled in:

— The one above
— The one to the left

— The one at the upper
left diagona

> o > A 4] P O

Filling in the Table

* There’s only one such entry in the table so far,
the one marked with an X.

* There are three ways sTeTaltlclc
to get to this cell. .

— From the left

— From above

— From the diagonal
* |n each case we

compute the running
score.

> o> A 4] > O

Filling in the Table

* If we come from the diagonal, the contribution to the
score is +1 or -1 depending on whether the letters
match.

* |f we come from above or
from the left, the only :
contributor to the score is
one indel. So, we add -1
to the running score.

* The three possibilities for
X then are:
— Diagonal:0+1=1
— From the Left: -1-1=-2
— From above:-1-1=-2

> o > 4 4] | O

Filling in the Table

 The winner is the Diagonal with +1.

G| G|A| T|C|C |G

> o P> A4 4] > O

Filling in the Table

* Let’s do one more, the one labeled X.

 This is another match,

G against G. G|G|A

* So, the three :
possibilities are:
— Diagonal:-1+1=0
— Fromthe Left: 1-1=0
— From Above:-2-1=-3

> o > A 4 P O

Filling in the Table

e |t's a tie.

* |n this case we draw —
both arrows.

* If the traceback
passes through this
cell, then there will
be more than one
optimal alighment.

> o > A 4] P O

Smaller Example

* |t would take an hour to fill in that whole table
by hand.

* So, let’s work a very simple example.
 GCaligned to GAC

G| C G| C

Filling in the Table

* The cell in marked with an X

represents a match:
— Ginthe row and G in the
column.
e So, this adds +1 to the score.
— Diagonal:0+1=1
— From the Left:-1-1=-2
— From Above: -1-1=-2

* The maximum is +1
: , A
(coming from the diagonal
direction).

Filling in the Table

 We annotate the
table like this,
keeping track of the
direction that
achieved the
maximum.

Filling in the Table

Next fill in the cell labeled X.

Here the cell represents a
mismatch G in the row to C in
the column. 2

So, this adds -1 to the score.
The three directions give:

— Diagonal: -1-1=-2

— Left: 1-1=0

— Above: -2-1=-3

The maximum = 0 and comes
from the left direction.

Filling in the Table

* \We annotate the

table like this.

Filling in the Table

* The cell marked with

an x is the only one
that can be filled in
next.

* This cell represents a
mismatch G in the

column and A in the
roOw.

Filling in the Table

* Since it’s a mismatch, it

adds -1 to the score.

* The three directions -
give:

— Diagonal: -1-1=-2
— Left: -2-1=-3
— Above: 1-1=0
* The smallest is 1-1=0

coming from the cell
above.

Filling in the Table

* That gets us here.

e Recall each cell
contains the
maximum of three
numbers. A

Filling in the Table

* Filling in the remaining
cells gives this.

* The value in the
bottom right cell gives
the optimal score of 1.

* Tracing back will give us
the actual alighment.

Tracing Back

e Start at the bottom right
cell.

* This cell was reached by
a diagonal arrow, so that

means match/mismatch
(as opposed to indel).

* This gets us here: A

C C
C

Tracing Back

 Follow the arrow to the
cell circled in red.

* |t was a vertical arrow
that got us to this cell,

so that’s an indel. G
* That gets us to here:
A
-1

AC

Tracing Back

 Follow the arrow to the
cell circled in red.

* |t was a diagonal arrow
that got us to this cell, so

that’s a match/mismatch. | @G

* That gets us to here:

G-C

GAC

Other Scoring Schemes

In DNA, an A is more likely to mutate
intoa GthantoaT.

And any substitution is more likely than
an indel.

An indel of length 2 is not twice as
unlikely as one of length 1.

These facts argue for a more
complicated scoring scheme.

Example where Score Matters

Suppose we are to align ACGT with AGCT
Consider two possible alignments:

Alignment #1 Alignment #2

ACGT A-CGT
AGCT AGC-T

Scoring Scheme 1:
— Match: +3, Mismatch: -3, Indel: -2
— Alignment #1 score = 0, Alignment #2 score =5

Scoring Scheme 2:
— Match: +3, Mismatch: -3, Indel: -5
— Alignment #1 score = 0, Alignment #2 score = -1

For scoring scheme #1, Alignment #2 is better.
For scoring scheme #2, Alignment #1 is better.

This is called an ‘linear gap penalty’ since it
grows proportionally with the length.

Linear Gap
Penalties

Affine Gap Penalties

As we noted, it’s less likely to start A linear gap penalty does not capture
a gap than to extend one. this.

A more general system that does capture this is to score -2 - K for a
gap of length K+1.

This is called an ‘affine gap penalty’.

Again, larger numbers are better. The penalty to initiate a gap (-2) is less than
the penalty to extend it by a base (-1).

Using this scheme does complicate Needleman-Wunsch, because the
value in a cell no longer depends on just the three neighbors.

Substitution Matrices

* |[n general, the substitution of one base for
another can be different for each pair of
nucleotides. In this case we can specify them
in a so-called “substitution matrix”

* |n this example
substitutions of purines
and pyrimidines are

oenalized greater than

ourines with purines or
oyrimidines with
oyrimidines.

Algorithmic
Complexity

e Computers are fast, so why do

we need to be clever
anymore?

* Why not just write a program

to do an exhaustive search
through all alignments, to find
the optimal ones?

e Unfortunately, computers are

not that fast.

* An exhaustive search for

sequences of length 1000
would take to the end of the
universe.

Complexity

Even if we're just aligning
short sequences, we often
must do it millions of times
in a row.

— For example, a high-
throughput sequencing
experiment can produce
100,000,000 sequence reads,
which all need to be aligned
to the (very large) genome.

We need a way of
characterizing the
efficiency of an algorithm,
so we can determine which
of two proposed
algorithms is faster.

[)
B I g O (N! (24) O(N log N)
/

Let f(t) be a function of time, where t = 0.

Let g(t) be another function of time, t = 0.

We say “f is big O of g” if the limit
Q@)
lim —=
t—c0 g(t)
is finite. Size of inpute data
— We write f= 0(g).

—~
[2]
[=

)
-1
@
o
@
Q
S
c

<
o

)

2
o
£
o)
(8]
o

e
o

£

|

 More generally, we require that there exists positive constants M and N such that

|f(t)/g(t)‘ < Mforallt >N

— For example, f(t) = cos(t), g(t) = 1. The limit does not exist, but cos(t) is still big O
of 1.

. -

Example

Let f(t) = t3+4t+6
Then fis big O of t3
In fact, fis big O of t” for any n>3.
Meanwhile f is not big O of t°.
flt)/t2=t+4/t+6/t? > ®

It’s not really
about time

The time variable t can really be any
parameter that takes values in [a, o) for
some a.

— For our purposes we’ll replace t with n, the

length of the larger of the two sequences to
be aligned.

And let f(n) be the number of operations
required to perform an alignment.

If fis big O of n, then doubling the length of
the sequences being aligned only doubles
the number of operations required.

To date nobody has found an algorithm that
is that fast and it’s probably been proven
impossible.

Complexity of
Alignment

If an algorithm is big O of n? then doubling
the length of the sequences increases the
number of operations by four-fold.

This may sound problematic, but quadratic
growth is usually considered good.

What you really don’t want is the algorithm
to be no better than big O of 2".

That’s exponential growth that gets out of
hand very quickly.

ABHEBILEYSCRABSCSSCABK | ABE AVEO T
ABGHBILEYSCRABSCSSC ABEK | ABGAVEO T
BHELEYSCRABSCSSCABKVTABS VEOS
BHELEYSCRABSCSSCABEKEVTABT VRO S
vEa | LPTSCRAGSCSSCAGKVVGG.V QS
VEB I BLEYSCRABSCSSC ABEKE YV VNEN'YVND
AB I BILBYSCRABSCSSCABEKEVTSESVND
B I BLEYSCRABSCSSCABKLETES LNO
AB I BLBEYSCRABSCSSCABKYVVSES VEOS
AR I BLEBEYSCRABSCSSCABKYVVSES VRO S
AR I BLBYSCRABSCSSCABKYVYVSEBF VRO S
ABLEBLEYSCRABSCSSCABKYVYVSES | RO S
ABLEBILEBEYSCRABSCSSCABKYVVSES | O SE

_< -

TTTDTVUVTODUODD
o

F
F
F
F
F
F
i
F

& &
4

| e) Al (el B S T e) e

* If a problem has exponential complexity, or does not have
polynomial complexity of a reasonably low degree

ngh — then it may simply be impractical to use an algorithm
. that guarantees an optimal solution.
Complexity ° P

Problems

Consider for example the problem of aligning not just two
sequences but N sequences in a so-called multiple
sequence alignment.

— This problem gets out of hand very fast.

* Therefore, often algorithms are
developed that do not
guarantee to find an optimal
solution but at least find one
that is reasonably close.

 Sometimes we can quantify
how close, and sometimes we
just proceed on faith.

 We will encounter numerous
heuristic algorithms in this ,

class.
V4

a

* Without going into too much detail, notice
how the Needleman-Wunsch algorithm
requires filling in a table.

* If the sequences both have length n, then
the table has on the order of n? cells.

— (n+1)%is “on the order of” n?, that just
means they’re both big O of each other.

* |t takes at least four operations to populate
one cell:

— Compute three numbers and take the
maximum. 0

* But notice how that number of operations
is basically constant, it’s the same for all ,
cells.

/

a

” N

» Suppose it takes f(n) operations \
to align two sequences of
length n by Needleman- |
Wunsch.

e Suppose there are k operations
involved in populating one cell,
and that’s the same k for all
cells.

* You should be able to convince
yourself, at least intuitively, that
fis big O of n? and in fact

)
im - k

n—oo N2

* |f we use a linear gap penalty, then it
requires more operations per cell.

CompIeX|ty of e But that does not necessarily mean the
Needleman- complexity increases beyond O(n?).

Wunsch with a
* For each cell one may need to maintain

Linear Gap the length of the current gap.

Pena|ty — But the number of operations per cell
is still constant.
— So, it’s still O(n?) just with a higher
limiting constant.

	Slide 1: Introduction to Bioinformatics
	Slide 2: Nucleic Acid
	Slide 3: Sequence
	Slide 4: DNA Double Helix
	Slide 5: Terminology
	Slide 6: DNA
	Slide 7: Genes
	Slide 8: Sequencing
	Slide 9: The Human Genome
	Slide 10: Length Limitations of Sequencing Methods
	Slide 11: Short vs. Long Read Technology
	Slide 12: Shotgun Sequencing
	Slide 13
	Slide 14: Assembly
	Slide 15: The Human Genome Project
	Slide 16: Whole Genome Shotgun
	Slide 17: From Reads to Analyzable data
	Slide 18: Example Applications of NGS
	Slide 19: Alignment
	Slide 20: Evolution of Sequences
	Slide 21: Substitutions
	Slide 22: Insertions
	Slide 23: Deletions
	Slide 24: Insertions and Deletions of multiple bases
	Slide 25: Terminology
	Slide 26: Directionality
	Slide 27: Alignment
	Slide 28: Indels
	Slide 29: Indel/Indel
	Slide 30: Point of Confusion
	Slide 31: Example Alignment
	Slide 32: Optimal Alignment
	Slide 33: Edit Distance
	Slide 34: Scoring Schemes
	Slide 35: Sequence Alignment Algorithms
	Slide 36: Exhaustive Search
	Slide 37: Very Large Search Space
	Slide 38: Efficient Algorithms
	Slide 39: Needleman-Wunsch
	Slide 40: Needleman-Wunsch
	Slide 41: Encoded Alignment
	Slide 42: Encoded Alignments
	Slide 43: Filling in the Table
	Slide 44: Filling in the Table
	Slide 45: Filling in the Table
	Slide 46: Filling in the Table
	Slide 47: Filling in the Table
	Slide 48: Filling in the Table
	Slide 49: Filling in the Table
	Slide 50: Smaller Example
	Slide 51: Filling in the Table
	Slide 52: Filling in the Table
	Slide 53: Filling in the Table
	Slide 54: Filling in the Table
	Slide 55: Filling in the Table
	Slide 56: Filling in the Table
	Slide 57: Filling in the Table
	Slide 58: Filling in the Table
	Slide 59: Tracing Back
	Slide 60: Tracing Back
	Slide 61: Tracing Back
	Slide 62: Other Scoring Schemes
	Slide 63: Example where Score Matters
	Slide 64: Linear Gap Penalties
	Slide 65: Affine Gap Penalties
	Slide 66: Substitution Matrices
	Slide 67: Algorithmic Complexity
	Slide 68: Complexity
	Slide 69: Big O
	Slide 70: Example
	Slide 71: It’s not really about time
	Slide 72: Complexity of Alignment
	Slide 73: High Complexity Problems
	Slide 74: Heuristics
	Slide 75: Complexity of Needleman-Wunsch
	Slide 76: Complexity of Needleman-Wunsch
	Slide 77: Complexity of Needleman-Wunsch with a Linear Gap Penalty

