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Local Alighment

* Global alignment only works when the two sequences
are related end-to-end.

* But more often one sequence is a subsequence of
another.

— A geneis asubsequence of a ' 3 (FASTAfile)
chromosome. -

-
a— Aligned reads
[}
==

— An exon is a subsequence of a transcript. (BAM file)

— A sequencing read is just a small piece of
a gene or a chromosome.

* If you want to locate a short 100-base sequencing read
in a 100 million base chromosome, Needleman-Wunch
would be useless.

— Not just because of efficiency, but because a global
alignment makes no sense in this context.



Local Alighment

A more flexible algorithm would be one that
doesn’t require all bases of both sequences to be
involved in the alignment.

Even so, the problem of finding a short read in a

long chromosome is so particular that it requires its
own algorithm, which we will look at later.

For now, we will maintain our focus on aligning two
relatively short sequences like two proteins or two
RNAs.




Functional Domains

* Typically, a protein has a few important stretches of amino
acids that perform some vital function (called ‘functional

domains’) and the rest of the amino acids separating these
stretches are just backbone.

478-680
S. cerevisiae

6-112 226-390
A. melanogenum

[ APSES-type DNA-binding domain

. Ankyrin repeat-containing domain

« This figure shows a gene with two functional domains
« Those are the only conserved part of the gene’s sequence
between distantly related species of yeast.

« Due to how DNA can shuffle, the parts in between may not even be
related.



Local Alighment

It could be that the stretches of sequence between the
functional domains has drifted so much that their
similarity is down to roughly 25%.

At that point alignment between these segments is
impossible.

— Relatedness needs to be established by the conserved
domains.

We need an algorithm where we can give both
sequences and it will find just the parts that align.

— We call this “local alignment”




Pfam

e Some argue that the fundamental
units of interest should not be whole
genes or proteins, but rather
“functional domains”

— These combine in different ways
to make full length proteins.

Cystine-knot domain
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* Thisis the perspective taken by Pfam
where proteins are classified by their
functional (and structural) domains.

— The domains are modelled by
Hidden Markov Models, which
we will talk about briefly later in
this lecture.




Complexity

There are orders of magnitude more possible local alignments
between two sequences than possible global alignments.

— All the global ones also count as local, plus a whole lot more.
Yet there are still algorithms that achieve n? complexity.

That does not necessarily mean they run at the same speed.

— Just because two algorithms are both big O of n? that does not
mean they run at the same speed.

— If the constant that bounds the limit is twice as big, then the
run time is still twice as long.

— But the constant does not depend on n and that’s the
important thing.

Yet, the local alignment algorithms actually do run at the same
speed as global.

— Because they require filling in a very similar table.




Smith-Waterman

The workhorse of optimal pairwise local alignment is
the Smith-Waterman algorithm, first published in 1981.

Smith-Waterman is very similar to Needleman-Wunsch.
There are two main differences.

— First, if the maximum of the three scores for a cell is
negative, then we put 0 in the cell, not the actual
max score.

— Second, you don’t (necessarily) start the traceback
in the bottom right corner and you don’t
(necessarily) end in the top left. See next slide.




Smith-Waterman

 Assume we have a scoring scheme.

— Larger numbers are better.

* The difference with Needleman-Wunsch traceback is that instead
of starting at the bottom right corner, you start in the cell with the
highest number and traceback only until you reach a cell thatis O
or negative.

* The initialization of
the first row and
column are all zeros.
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from Wikipedia,
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Finished scoring matrix (the highest score is in blue) Traceback process and alignment result




Greedy Algorithms

We're searching a (greater than)
exponential search space in
polynomial operations.

Why does this work?

It works because alignment is a
special class of problem which can be
broken down into a finite sequence
of problems where:

Finding the optimal solution at
each step along the way yields a
global optimal solution.

Given the optimal solution at step
n there’s a simple procedure for
finding the optimal solution for
step n+1.




Greedy
Algorithms

Just because we construct an iterative algorithm that
appears to do the optimal thing at each step, that does
not mean it will be ‘globally’ optimal.

It is the case with sequence alignment, but there’s a
mathematical proof we must do to know that for sure.

For an example where a greedy strategy failes, consider
the travelling salesman problem of finding the shortest
route to visit n cities.



City 1 City 2 City 3 City 4

.—b.—r.—>.

This is the route the greedy
algorithm would return

City 1 City 2 City 3 City 4
(9] O — @9 —— (6]

But this is the shortest route

Greedy
Algorithms

Suppose you must start in City 1.

The greedy algorithm is as follows:
— Travel to the nearest city at each step.

This algorithm does not guarantee the shortest
route overall.




Nucleic Acid Alignment

There are many applications of nucleic acid alignment.

— In different contexts it requires very different considerations. There’s can be
no “one algorithm fits all”

— Here are some examples to illustrate how varied the problem is.

Align short (gene length or shorter sequences) to each other, to infer their
evolutionary relationship.

- In this case identity may be quite low.

— Use this to search a database to find related sequences to a sequence in
hand.

Align sequenced fragments of a gene or chromosome to each other, to assemble
them into “contigs”.

— In this case identity should be quite high, near 100%
Find the location of a gene in a genome.

- We may have the RNA of an unknown gene and want to find it in the DNA.

— In this case identity should be high.
Comparative Genomics

— Align entire chromosomes from different species.




Low Complexity
Sequence

Low complexity sequence is sequence
with short patterns.

A simple example is:

JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVIVIVAVAVAVAVAVAVIVIVAY

Suppose you are searching for a gene
which had this sequence of A’s in it and
this stretch of A’s was all that aligned.

— We would not be very convinced
the sequences are related, even
though it’s 30 bases long, so
should not occur more than once
in random sequence, it’s obviously
not random.




Modeling
DNA/RNA
with
Random
Sequence

We tend to model DNA and RNA by random
independently and identically distributed bases.

— Imagine rolling a four-sided die a bunch of
times in a row.

We use this “random” model to assess the
significance of things.

— You'll see, this will be a recurring theme.

In random sequence, a string of 30 A’s in a row
would be unlikely.

— Butin DNA it happens frequently, because
DNA is not random.

Therefore, we must be careful when using this
model to assess likelihoods.




e S’ for
sequence, ‘G’
for genome.

Random
Sequence

e To 3 decimal
places, it’s
0.786




Random Sequence

Given the human genome
is 3.4 Gb, how long does a  * There are 1,048,576 sequences of length 10.

subsequence need to be in e There are 4,294,967,296 sequences of length 16.

order to be unlikely to be e There are 1,099,511,627,776 sequences of length 20.
found just by chance?

So somewhere between
16 and 20.




Repeat Sequence

* Nucleic acid sequence as found in nature is not random.

— It is highly structured.

— And it is full of so-called “repeats” and “low complexity
sequence”.

 Some elements in the genome like to duplicate
themselves, ALU for example, a sequence of about 300
bases that occurs over 1,000,000 times in the human
genome.
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P-Values

An alignment is not interesting if we would not be
surprised to find it between two unrelated sequences
of the same sizes.

In the age of big data, alignments with high scores
happen if you give them enough chances to happen.

To handle this, we will require p-values.

— Which will require a null probabilistic model of
sequence.

— That’s where random sequence comes in.

When we do this, it will be particularly important to
handle repeat and low-complexity sequence properly.

— Otherwise, an alignment of a stretch of 25 A’sin a
row would be considered highly significant.



Multiple Alignment
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Marmoset
Squirrel_monkey
Parrot

Gorilla
Scarlet_macaw

Human
Chimp
Orangutan

Gibbon

Rhesus

Crab-eating_macaque

Baboon
Green_monke
Turkey
Tetraodon
Nile_tilapia

Princess_of_Burundi

Chicken
Burton's_mouthbreeder

Bushbaby
Saker_falcon
Peregrine_falcon
Collared_flycatcher
White-throated_sparrow
Zebra_finch
Budgerigar
Rock_pigeon
Mallard_duck
Stickleback
Atlantic_cod

Zebrafish
fexican_tetra_(cavefish)
Spotted_gar

Lamprey

Tibetan_ground_jay
Zebra_mbuna

Pundamilia_nyererei
Southern_platyfish

Medium_ground_finch




Multiple Alignment

You may never realize how important those first two nucleotide
bases of the intron are until you see this.
— Nothing else in the intron is conserved across primates, fish and birds.

20 bases | | hg38

1
13,700,480  13,700,485|  13,700,490|  13,700,495|  13,700,500| 13,700,505  13,700,510|  13,700,515| 13,700,520  13,700,525|
TTTAATGAAAATTTAAGGTAAGTACAAGTAATTATATAATATTTGAACTTC

Crab Leg
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Chimp
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Orangutan
Gibbon
Rhesus
Crab-eating_macaque
Baboon
Green_monkey
Marmoset
Squirrel_monkey
Bushbaby
Saker_falcon
Peregrine_falcon
Collared_flycatcher
White-throated_sparrow
Medium_ground_finch
Zebra_finch
Tibetan_ground_jay
Budgerigar
Parrot
Scarlet_macaw
Rock_pigeon
Mallard_duck
Chicken
Turkey
Tetraodon
Nile_tilapia
Princess_of_Burundi
Burton's_mouthbreeder
Zebra_mbuna
Pundamilia_nyererei
Medaka
Southern_platyfish
Stickleback
Atlantic_cod
Zebrafish
fexican_tetra_(cavefish)
Spotted_gar
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Algorithms

Let’s try to lift the concepts developed for
pairwise alignment to the problem of multiple
alignment.

First off, we need a scoring scheme.

How should that work when we have multiple
sequences?

To build some intuition, let’s first consider three
sequences aligned together. Could set:

— +1 if all three are equal at a location.
— -1if two are equal and one is different
— -2 if all three are different.

That’s at least natural.

— Might get complicated to extend this
scoring scheme to many sequences.




Sum-of-Pairs Score (one position)

* Instead of scoring all possible N-tuples at a position,
we can just sum all pairs using the usual pairwise-
alignment score.

* Suppose s(x,y) is a pairwise alighment scoring
function, with linear gap penalty, so one of x ory
could be an indel.

—lifx#y

* For example: +lifx =y
s(x,y) =
—1 1f one of x or y i1s an indel

e Then




, EXAMPLE
Sum-of-Pairs

Score (full
alignment)

A T
A G
A G

Position 1: Z s(aj,a;) = s(A,A) + s(A,A) + s(A,A) =3
i#]

The function s on the Position 2: Z s(ai,a;) = s(T,G) + s(T,G) + s(G,G) = -1

previous slide is to oy

score on position of a

multiple sequence Position 3: Z s(ai,aj) = s(C,T) + s(C,G) + s(T,G) = -3
alignment. #

To score the entire Position 4: Z s(ai,aj) = s(A,—-) + s(A,A) + s(—,A) = -1
alignment you must i#]

SUm L Position 5: Z s(ai,aj) = 5(G,G) + s(G,G) + 5(G,G) = 3
positions. pry

This score works for
any number of
seguences.



Smith-Waterman

With any scoring scheme, one
could generalize Smith-Waterman
to find a local multiple alignment
with optimal score.

If there are N sequences, this
would involve filling in all the cells
of an N-dimensional table.

Then if aligning N sequences of
length m, the complexity of this
algorithm is O(m™).

That quickly gets out of hand.

("kijll'k)

(Fkjl)

mh

(i,jk,1)




Many Long Sequences

The multiple alignment shown in the genome browser
involves large N and m.

Here for example is a 20,000 base sequence of genome
aligned across 39 species, as shown in the conservation track.

— This was not done with Smith-Waterman, or any other method that
guarantees to find an optimal scoring alignment.

multi-region | chr11:13,694,422-13,714,421 20,000 bp.
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Heuristic Approaches

A heuristic approach is one that does not
guarantee to find the optimal.

— This is different from an
“approximation algorithm” because
those give you a handle on how far
the solution is from optimal.

In heuristics, you have no handle on
that.

— But they can still be very useful
when no fast alternative can be
found.




Multiple Alignment Heuristics

Several completely different approaches have
been taken to this problem.

Hidden-Markov Models
Gibbs Sampling
Some examples are:

Tree-Guided Progressive Alignment

Maximum Parsimony

We will focus on one of these that does not
involve heavy machinery.




Progressive Alighment

* This is a strategy for building multiple alignments that starts
by aligning two of the sequences.

 Then it aligns a third sequence to the pairwise alignment.

— WEe'll have to talk about how that’s done, but it’s relatively
straightforward.

* Then one by one it adds sequences to the multiple alighment.

AAGGCACGCGCCTGCTAGTCTAATGGAATTCG

TAGTCCCGCGGAGGCTATGCTAGTCTAATCTCTGGCG
TTGTCTCGCGGAGGCTGCTAGTCCATCTA
TTGTCCCACAGAGGCCATGCTAGACCGGTTTCTACAA

TTGTCCCGCAGAGGCCATGCTAGACCAGTTTCTACAA







Distance Between Sequences

To define “close” we must have some concept of “distance” between two
(related) sequences.

Let S, and S, be two sequences.
Suppose we have a pairwise scoring scheme s(S,, S, ).

— First, align the two sequences S, and S, with Needleman-Wunch to find an alignment
with optimal (highest) score.

Now define the distance between S, and S, to be:

d(S;,S,) =number of mismatches/indels

In the optimal alignment

— We still needed Needelman-Wunch to align them, but we do not use the score as
distance.

This behaves like a distance more than s does, because:

1. dis always positive

2. d(S;,S,)=0ifandonlyif S, =S,.

3. The more distantly related the sequences, the bigger d is.
<
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Distance Matrix

e Calculating the pairwise distance
between all pairs of sequences
gives us a matrix of distances.

 For example, suppose we have
five sequencesa, b, ¢, d, e.

— The matrix could look like the one
shown here.




Phylogenetic Tree

Suppose we had the phylogenetic tree
showing the evolutionary relationship
between the five sequences.

— Thisis called an “unrooted” tree, we
do not know where inside this tree
the ancestral species sits, nor the
direction of evolution along the
internal branches.

— There are three inferred ancestral
“sequences” u, vand w.

— The numbers represent evolutionary
distance, in some units.



Phylogenetic Tree Distances

We calculate the distance between
nodes in the tree by summing the
distances of the edges connecting
them.

For example, the distance between
a and cis 2+3+4=9.

Notice, that is the same distance in
the distance matrix that we found
from the alignments.
— We say this is a “tree derived”
distance.
The trick is to go backwards, from
the matrix to the tree.




Phylogenetic Tree
Distances

If there really is a tree that recovers the same
distances as in the matrix, then (happily) we
can find it.

If there is no tree that gives the exact distance
matrix, then the goal is to get as close as
possible.

This is the business of phylogenetics.

A big business we don’t have time to go into
very far.

We will just look at one algorithm because it’s
used in multiple sequence alignment.




Neighbor Joining

Neighbor Joining depends on the following
theorem:

Suppose we have a set of sequences and a
distance function d(x,y).

Define 0 (x, y) as follows.

Then the x and y such that 6 (x, y) is smallest
are necessarily neighbors in the tree.



Neighbor Joining

e Start with the with a completely unresolved
tree, whose topology corresponds to that of a
star.




Finding First Neighbors

e Suppose a and b are the pair of sequences with
minimal o.

— In other words, 6 (a, b) < §(x,y) for any x and y.

* Then we know a and b are neighbors, so that means
the tree topology has to be like this.

— For some ancestral node u.




Adding Distances

e We next need to determine the distances x
and y to the ancestral node u to a and b.




Clever Calculation #1

e We know
x+y=d(ab)=5.

* And,
d(b,c) + d(b,d) + d(b,e) — d(a,c) — d(a,d) —
d(a,e)
= 3X — 3V.

* We can look those six distances up in
the distance matrix, giving

10+10+9-9-9-8=3x—-3y
* Which simplifies to
x—y=1
Combine this with x + y = 5 gives:

x=3,y=2



Lather, Rinse,
Repeat

Now we need to determine the
distance from u to the remaining
nodes ¢, d, e.

— Once we know that, we have
turned our five-node problem
into a four-node problem.

— We repeat the process, until we
get down to the last two nodes
which must be neighbors..




Calculation #2

* We need to determine x + y because that
is d(u,c).

d(b,c)=3+x+y

And we know d(b,c)=10 from the distance
matrix.

Therefore,
x+y=7
* Thus, we have shown that d(u,c) = 7.

— Likewise, we can find d(u,d) and d(u,e).




Next Step

* Proceeding with the four nodes ¢, d, e and u
the next pair of neighbors are d and e.

* Making similar calculations as before gives the
final (unrooted) tree.

* Thisis a very
efficient algorithm.
— Can align many

long sequences
very fast.




Example

mars.mole

wombat

* Let’s build a tree from 14 species. e

elephant

— We’ll use the gene “interphotoreceptor whale

dolphin

retinoid binding protein” which is found in B

horse

all 14. &

insectivo
human

— Here’s a piece of the alignment:

hyrax

gaggtagtagaaaaagtcggggagttcctggtgaatgacatctggaagaagcetcatggggacatcctctctagtgetagatctccagcacageacagggggtgaagtttcgggaatcccctttgtcatttcctatctacatcagggggatat cctgetccatgtagacacagtttatgaccggecatcaaacactaccacagagatctggacccagectcaggtgetg
gaggtggtagagaaagtcggggagttcctggtgaatgatgtctggaagaagetcatggggacctettctctggtgt tggatctccagecacageacgggaggegaagtttcaggaatcecgtitgtecatttectacctacaccagggggataatetgetgeatgtagacacagtttatgaccggecatcaaacaccaccacagagatetggaccetgecccaggtgttg
gaggtactgagtaagctcgggggattectggtggeccacatgtgggggeagetcatgaatacctetggettggtgetagatctecggeactgtactggggggeatgtttctggtattccctatgtecatctectacttgeaccccgggaacac aatcatgeatgtgaacaccatctatgatcggecctctaataccaccacagagatetggacctiggecaaggtectg
gaggtactgagccgactaggggecttectggtggeccatgtctggagacagetcatgggeacctetgetitggtgt tggacctgeggeagtgeacaggaggecatgtttccageatcccttaccttatttectacctgeacccagegggeac ggtectgeacgtigacaccatttacaaccgtccctctaacacaaccactgagetctggactitgectcaggtgett
gaggrgcetgaaccagetgggggecttectggtgactcacgtctggaageagettatgggetectetgecttagtge tggacctgegacactgeacagggggecatgtctecageatcecttacctcatttcctacctgeaccegggeggeac cgtgetgeacgtggacaccatttacaaccgeccctccaatacgactacggagetctggaccttgecccaggtgetg
gaggtgatgagcaagctgaggagcttcctggtggecaacgtctggaggaagetcatgggeacctetgectiggtgetggaccteccgecattgeactgggggecacatttctggeatcccctatgtcatctectacctgeacceggggaacacagtectgeacgtggataccatctatgatcgececctctaatacgaccactgagatctggaccctgeccgaagtecta
gaggtgatgagcaagctgaggagettectggeggecaacgtctggaggaagetcatgggeacctetgectiggtgetggacctecgecactgeactggeggecacatttecggeatcccctatgtecatctectacctgeacccagggaacacagtcctgeatgtggataccatctacgatcgeccctetaatacgaccactgagatetggaccctecccgaagtecta

gaggtgatgaacaagctggggagettectggtagtcaacgtctgggaaaagctaatgggcacctetgecttggtgetagacctecggeactgeaccaggggecacgtttctggeatcccctatgteatctectacctgeacccagggaacac ggtectgeacgtggacaccatctatgaccgtccctccaatacgaccactgagatetggaccctgeccgaagtectg
gaggtggtgagcaagetggggggcttectggtggacaatgtctggaggaagetcatgggeacctetgectiggtgetggacctecggeactgeactgggggecacgtttccggeatcccctatatcatctectacctgeacccaggaaacac ggtcctgeacgtggacaccatctacgaccgeccctccaatacgaccactgagatcetggaccetgeccgaggtectg
gaggtggtgagcaatettgggggettectegtggacaatttctggaggaagetectgggeacctetgecttggtgetagaccteccacactgeactggggggeacgtttctgggatctectatgteatctectacttgeaccgagggaacac cgtectgaatgtggacccactctatgaccccccctccaacacgaccacagagatetggaccctgecccaggtectg
gaggtggtgaccatactgggggctctectggtggecaatgtctgggggaagetcatagecacctctecctiggtgetggaccteccgacactgeactgggggecatgtetetgggateccectacgtcatctectacctgtacccaggaaacac ggtectgeatatggacaccatctatgaccgeccctecaatatcaccactgagetetggaccetgecccagetccag
gaggrgcetgageatgatgggggagttectggtggeccacgigtgggggaatctecatgggeacctecgecttagtgetggatctecggeactgeacaggaggecaggtctetggeattecctacatcatctcctacctgeacccagggaacac catcctgeacgtggacactatctacaaccgeccctccaacaccaccacggagatcetggaccttgecccaggtectg
gaggtgetgageegtetggggggettectggtgactcacatctggaageagetcatgggetectetgecttagtcctggacctgeggeactgtatgggtggecatgtctecageatcccttacatcatctectacctacaccecggaggageagtgetgeatgtggacaccatttacaaccgecectccaatacgactactggggtcetggaccttgecccaagtgetg
gatgtgctgaaccagetggggggettectggtgactecatgtgtggaageagetcatgggetectetgecttagtgetggacctaaggcactgeacggggggecatgtctecagtatcccttacctecatctectacctgeatccagggageac tgtgetgeacgtggacaccatttacaaccgeccctccaatacaactactgagetetggacctigecccaggtgetg




Distance Matrix

e The distance matrix looks like this.

— It has been normalized so all distances are

between 0 and 1, but it’s essentially the same
information as before.

— Notice Is Is symmetric.

mars.mole
wombat
rodent

elph.shrew .
elephant
whale
dolphin

pig

horse

bat
insectivor .
human

sea cow

hyrax



Four Algorithms, Four Trees

This shows how you can get different trees depending on algorithm.

— The tree also depends on the pairwise scoring function, because different ones can give
different distance matrices.

There are some consistencies between the trees however.

Neighbor Joining Maximum Parsimony Maximum Likelihood

+--insectivor rodent +--mars.mole

+whale
+——+
+--+ +dolphin

rodent +--wombat

+----human rodent

+-—-—-sea cow
! ! F—t

+--dolphin ! ! vt bt 4---hyrax ! +-—+ +dolphin
+-—+ H e +-——+ +-——+ 1 1

+whale
+——+

+--whale +--elephant +-—+ +--pig
rot

+----insectivore elph.shrew +——+

=== HOLEe
! 1
----human +--+ +----human

! +---bat
+——+

+----mars.mole

+-dolphin
+——+
+whale

+---insectivore

elph.shrew : elph.shrew elph.shrew

-rodent +--elephant

+--elephant
==+

+-—+

-wombat +--+ +---sea cow +--+ +--sea cow
|

-mars.mole +---hyrax +----mars.mole

+---hyrax




Guide Tree

However, we get the tree, it can
now be used to determine the
order in which the sequences are
progressively aligned.

First all neighbors are aligned in
pairwise alignments.

Then they can be merged into
alignments of four sequences.

— Etc., until all sequences are in
one big multiple alignment.




ClustalW

* The app clustalW uses this neighbor-
joining/progressive alignment approach.
— But the devil is in the details.

* Nothing is ever as simple as it seems in class.

— We strip out a lot of the details to illustrate the main
concepts.

— But it always requires tweaking and fine-tuning to get it to
work well.
 There are numerous online servers for ClustalW, for
example this one out of the European Bioinformatics
Institute:

https://www.ebi.ac.uk/Tools/msa/clustalo/



Genes, Proteins, Sequences
- and Models -

— B —

Consider a gene’s sequence.

Now consider that same gene across all Eukaryotes.
— Say it’s a basic gene found in all species.

These sequences are all different but they’re similar.

Imagine if you had these sequence from enough
species that you could make up your own novel ones
that look like they belong to the family.

Your brain is modeling the family.
Now imagine writing a computer program to do it.
You’d need some sort of “model” you can program.

For some positions that might be easy, for example if
it’s the same nucleotide in all species.

For others you might mimic the frequencies of the
four bases.

You’d also have to figure out how to model indels so
they resemble the ones in the family.

This can be done with a Hidden Markov Model.




Hidden
Markov
Models

* A completely different approach to
multiple alignment is to built
something called a Hidden Markov
Model (HMM).

— We will learn about Markov Models
soon. But not HMMs.

A Hidden Markov Model is just a bit

more complex and therefore allows
for modeling more complex biological
problems.



Hidden Markov Model Approach to
Multiple Alignment

* You train the model parameters on the data.

— The data just consists of the unaligned
sequences.

 Then there’s a way for each sequence to
determine its shortest route through the
model.

 Those shortest routes when put together
determine a multiple alignment.

* We're skipping the details for the high-level
concept.




The Brazil Nut Effect

* Suppose you are tasked with placing
different sized objects in a container so that
no object is higher than another object that
weighs more.

— To solve this problem exactly, you might have
to weigh each object and place them
methodically.

e But what if an approximate solution was
acceptable.

* In this case you could just shake the
container and let physics do its thing.

— Most of the largest objects will rise to the
top and the smallest to the bottom.

* Gibbs Sampling is sort of like this, you start with something random and
you create the right force (alignment score instead of gravity) and then
you shake and a decent alignment falls out.



STOP HERE

You are not responsible for the
following material, pseudo-
counts and the Lawrence
method.

But it is another multiple
sequence alignment method
using yet another completely
different approach.




Gibbs Sampling

There’s a multiple alignment method
that is basically an implementation of
Gibbs Sampling, which uses Markov
Chain theory.

— The details are beyond our scope
here.

It’s a (clever) heuristic approach to
searching large spaces for points where
a function of the space (into the real
numbers) is optimized.

— This is done by bouncing around
the space somewhat randomly,
but in a way the makes
‘interesting’ things more likely to
be visited over time.




BLOCKS

(we will cover this time permitting)

* Next, we are going to look at a statistical
method for finding the ungapped local
alignments used to create the blocks for
BLOSUM matrix construction.

— Introduced by Lawrence et al. (1993).



Counts and Pseudocounts

* Suppose we have a large population of three
types of things: A, B and C.

— Say there are n, things of type A, n; of type B, and
n. of type C.

* The probability of choosing A at random is

L
Pa =
Ny + Npg + Nce
* Suppose we don’t know n,, n; orn. and we

want to estimate them from data.




Counts and Pseudocounts

* We sample the population a N times and count.
* Suppose there are m, As, mg; Bs and m, Cs in the sample.

* The natural estimates are

L5 my
Pa =

mA + mB + mC
N mp
Pp =

mA + mB + mC
Pt mec
Pc =

mA+mB+mC

* Convince yourself that these sum to 1.



Rare Events

 But what if one of the things, say B is rare, so
rare that we are unlikely to sample one in our
random sample of size N.

* In that case, the count m, = 0 and as a result
the estimated probability p, = 0.
— This can be undesirable in some situations,

including in the Lawrence algorithm, as we shall
see.



Pseudocounts

* This situation is often rectified by adding a
natural number to each count, known as a
pseudocount.

g mA+b
Pa =

mA+mB+mC+3b
. mB+b
Pp =

mA+mB+mC+3b
L mC+b
Pc =

My + mpg + me + 3b
* Convince yourself that these also sum to 1.
* And they are now all greater than O.



Pseudocounts

Pseudocounts have a greater impact on smaller
numbers.

Adding 1 to the numerator and denominator of 0.05 /
0.23

— Before: 0.2174

— After: 0.8536

has a much greater effect than adding 1 to the
numerator and denominator of 1247 / 8253

— Before: 0.1511

— After: 0.1512

This will be important in RNA sequencing and gene
guantification.



The Lawrence Method
- to create multiple alignments -

e Number the amino acids 1, 2, ..., 20, and
suppose that these have respective
background frequencies p,, p,, .., Pyo-

* Given N protein sequences, of respective
lengths L,, L,, ..., L, the aim is to find N
segments of length W, one in each sequence,
that are most similar to each other.

— For now, W is a fixed constant



The Lawrence Method

» Thereare S = [I;_,(L; — W + 1) possible
choices for the respective locations of N

segments of length W in the N respective
sequences.

* Itis assumed that N and the L; are so large
that a purely algorithmic approach is not
feasible.

* The procedure consists of repeated iteration
of a basic step.



The Lawrence Method

The initial alignment can be chosen arbitrarily or as
an initial guess of the best alignment.

This consists of choosing the
starting (leftmost) location in
each of the N sequences.

P
o+
(==
@)

B

— Which can be any position from 1 to
L-W+1

So, we start with a block array of
letters W wide and N high.

QOB O,
NQRQmkwg
N e L

1
7
A
L
|44
S
S

Q
-
Q
=

In each step one of the various sequences is chosen
at random to be changed.

— We remove this sequence from the array



The Lawrence Method

H
ﬁ.
2
B

-
-
3/ ~

O/ HOQ™ |

NQR QW Rwg
-~ Ro R~ e

S 22

1
7
A
L
W
S
S

=

We'll call the array after removal the ‘reduced array’

Suppose that in the reduced array, amino acid j
occurs c; times in the ith column.

Define

Cij + b]
N—1+8B
where b; are pseudocounts and B = ) of

dij =

The g;'s sum to 1.



The Lawrence Method

The aim of the step is to replace the original segment in
the chosen row by a new segment in a way that tends to
increase the overall quality of the alighnhment of the N
resulting segments in the new array.

Assume for concreteness that row 3 is chosen.
— There are L;— W + 1 segments of length W in sequence 3.

Call the segment starting in position x in sequence 3
“segment x.”

Suppose the amino acids in the segment are x;, x,, ..., Xy-
The probability of this ordered set of amino acids under
the population frequencies is

P = Px; * Px, *** DPxy,



Likelihood Ratio

P, is the null hypothesis probability of the
segment.

We want to compare it to the alternative
hypothesis probability derived from the
current aligned block, with the one chosen
sequence removed.

This is given by
Qx = Qi,x, * 92,x, **° Qw, xy,
The likelihood ratio LR(x) is defined as
Q,/P,



Likelihood Ratio

 The numerator may be thought of as the
probability of the sequence under the model
reflecting the sequences in the current
alignment.

* While the denominator is the probability of
the sequence under “background”
frequencies.

* We replace the segment in the chosen row
with the segment x which has maximum LR(x).



Ilteration

* As one step follows another the N segments in
the block tend to become more similar to each
other,

— Or in other words, to align better.

* This iterative procedure visits various possible
alignments according to a random process, and
thus does not systematically approach the
“best” alignment.

— However, after many steps the best alighments tend

to arise more and more frequently and hence be
recognized.



The Pseudocounts

* |If pseudocounts were not used and the probability
estimate g replaced by ¢;/(N - 1), then g; could be
equal to zero, causing possibly excellent
alignments to be skipped over in the random
search.

* If we make each b, > 0 then the entire space of all
possible blocks can be visited.

* The choice of the pseudocounts b; must be made
subjectively.

— Lawrence et al. (1993) make the reasonable suggestion
of making b; proportional to g; with proportionality
constant V'N.
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