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Local Alignment
• Global alignment only works when the two sequences 

are related end-to-end.

• But more often one sequence is a subsequence of 
another.

• If you want to locate a short 100-base sequencing read 
in a 100 million base chromosome, Needleman-Wunch 
would be useless.

– Not just because of efficiency, but because a global 
alignment makes no sense in this context.

– A gene is a subsequence of a 
chromosome.

– An exon is a subsequence of a transcript.

– A sequencing read is just a small piece of 
a gene or a chromosome.



Local Alignment

A more flexible algorithm would be one that 
doesn’t require all bases of both sequences to be 
involved in the alignment.

Even so, the problem of finding a short read in a 
long chromosome is so particular that it requires its 
own algorithm, which we will look at later.

For now, we will maintain our focus on aligning two 
relatively short sequences like two proteins or two 
RNAs.



Functional Domains
• Typically, a protein has a few important stretches of amino 

acids that perform some vital function (called ‘functional 
domains’) and the rest of the amino acids separating these 
stretches are just backbone.

• This figure shows a gene with two functional domains
• Those are the only conserved part of the gene’s sequence 

between distantly related species of yeast.
• Due to how DNA can shuffle, the parts in between may not even be 

related.



Local Alignment
• It could be that the stretches of sequence between the 

functional domains has drifted so much that their 
similarity is down to roughly 25%.

• At that point alignment between these segments is 
impossible.
– Relatedness needs to be established by the conserved 

domains.

• We need an algorithm where we can give both 
sequences and it will find just the parts that align.

– We call this “local alignment”



Pfam

• Some argue that the fundamental 
units of interest should not be whole 
genes or proteins, but rather 
“functional domains”

– These combine in different ways 
to make full length  proteins.

• This is the perspective taken by Pfam 
where proteins are classified by their 
functional (and structural) domains.

– The domains are modelled by 
Hidden Markov Models, which 
we will talk about briefly later in 
this lecture.



Complexity
• There are orders of magnitude more possible local alignments 

between two sequences than possible global alignments.
– All the global ones also count as local, plus a whole lot more.

• Yet there are still algorithms that achieve n2 complexity.

• That does not necessarily mean they run at the same speed.
– Just because two algorithms are both big O of n2 that does not 

mean they run at the same speed. 
– If the constant that bounds the limit is twice as big, then the 

run time is still twice as long.
– But the constant does not depend on n and that’s the 

important thing.

• Yet, the local alignment algorithms actually do run at the same 
speed as global.

– Because they require filling in a very similar table.



Smith-Waterman
• The workhorse of optimal pairwise local alignment is 

the Smith-Waterman algorithm, first published in 1981.

• Smith-Waterman is very similar to Needleman-Wunsch.

• There are two main differences.

– First, if the maximum of the three scores for a cell is 
negative, then we put 0 in the cell, not the actual 
max score.

– Second, you don’t (necessarily) start the traceback 
in the bottom right corner and you don’t 
(necessarily) end in the top left.  See next slide.



Smith-Waterman
• Assume we have a scoring scheme.

– Larger numbers are better.

• The difference with Needleman-Wunsch traceback is that instead 
of starting at the bottom right corner, you start in the cell with the 
highest number and traceback only until you reach a cell that is 0 
or negative.

• The initialization of 
the first row and 
column are all zeros.

• This example, copied 
from Wikipedia, 
illustrates the 
process.



Greedy Algorithms

• We’re searching a (greater than) 
exponential search space in 
polynomial operations.

• Why does this work?

• It works because alignment is a 
special class of problem which can be 
broken down into a finite sequence 
of problems where:

1. Finding the optimal solution at 
each step along the way yields a 
global optimal solution.

2. Given the optimal solution at step 
n there’s a simple procedure for 
finding the optimal solution for 
step n+1.



Greedy 
Algorithms

• Just because we construct an iterative algorithm that 
appears to do the optimal thing at each step, that does 
not mean it will be ‘globally’ optimal.

• It is the case with sequence alignment, but there’s a 
mathematical proof we must do to know that for sure.

• For an example where a greedy strategy failes, consider 
the travelling salesman problem of finding the shortest 
route to visit n cities.



Greedy 
Algorithms

• Suppose you must start in City 1.

• The greedy algorithm is as follows:
– Travel to the nearest city at each step.

• This algorithm does  not guarantee the shortest 
route overall.

This is the route the greedy 

algorithm would return

But this is the shortest route



Nucleic Acid Alignment
• There are many applications of nucleic acid alignment.

– In different contexts it requires very different considerations.   There’s can be 
no “one algorithm fits all”

– Here are some examples to illustrate how varied the problem is.

1. Align short (gene length or shorter sequences) to each other, to infer their 
evolutionary relationship.

– In this case identity may be quite low.

– Use this to search a database to find related sequences to a sequence in 
hand.

2. Align sequenced fragments of a gene or chromosome to each other, to assemble 
them into “contigs”.

– In this case identity should be quite high, near 100%

3. Find the location of a gene in a genome.

– We may have the RNA of an unknown gene and want to find it in the DNA.

– In this case identity should be high.

4. Comparative Genomics

– Align entire chromosomes from different species.



Low Complexity 
Sequence

• Low complexity sequence is sequence 
with short patterns.

• A simple example is:

  
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• Suppose you are searching for a gene 
which had this sequence of A’s in it and 
this stretch of A’s was all that aligned.

– We would not be very convinced 
the sequences are related, even 
though it’s 30 bases long, so 
should not occur more than once 
in random sequence, it’s obviously 
not random.



Modeling 
DNA/RNA 

with 
Random 

Sequence

• We tend to model DNA and RNA by random 
independently and identically distributed bases.

– Imagine rolling a four-sided die a bunch of 
times in a row.

• We use this “random” model to assess the 
significance of things.

– You’ll see, this will be a recurring theme.

• In random sequence, a string of 30 A’s in a row 
would be unlikely.

– But in DNA it happens frequently, because 
DNA is not random.

• Therefore, we must be careful when using this 
model to assess likelihoods.



Random 
Sequence

• ‘S’ for 
sequence, ‘G’ 
for genome.

Suppose the 
problem at hand 

is to find the 
location of a 

small sequence 
S within a large 

sequence G.

• 43 = 64
How many 

sequences are 
there of length 

3?

• To 3 decimal 
places, it’s 
0.786

If S has length 3 
and G is a 
random 

sequence of 
length 100, what 
is the probability 
of finding S in G? 



Random Sequence

• There are 1,048,576 sequences of length 10.

• There are 4,294,967,296 sequences of length 16.

• There are 1,099,511,627,776 sequences of length 20.

Given the human genome 
is 3.4 Gb, how long does a 
subsequence need to be in 
order to be unlikely to be 

found just by chance?

So somewhere between 
16 and 20.



Repeat Sequence
• Nucleic acid sequence as found in nature is not random.

– It is highly structured.

– And it is full of so-called “repeats” and “low complexity 
sequence”.

• Some elements in the genome like to duplicate 
themselves, ALU for example, a sequence of about 300 
bases that occurs over 1,000,000 times in the human 
genome.

Human genome stained for ALU elements



P-Values

• An alignment is not interesting if we would not be 
surprised to find it between two unrelated sequences 
of the same sizes.

• In the age of big data, alignments with high scores 
happen if you give them enough chances to happen. 

• To handle this, we will require p-values.

– Which will require a null probabilistic model of 
sequence.

– That’s where random sequence comes in.

• When we do this, it will be particularly important to 
handle repeat and low-complexity sequence properly.

– Otherwise, an alignment of a stretch of 25 A’s in a 
row would be considered highly significant.



Multiple Alignment
• If you zoom in far enough on the conservation track, it 

shows a multiple sequence alignment across many 
species.



Multiple Alignment
• You may never realize how important those first two nucleotide 

bases of the intron are until you see this.
– Nothing else in the intron is conserved across primates, fish and birds.



Algorithms

• Let’s try to lift the concepts developed for 
pairwise alignment to the problem of multiple 
alignment.

• First off, we need a scoring scheme.

• How should that work when we have multiple 
sequences?

• To build some intuition, let’s first consider three 
sequences aligned together.  Could set:

– +1 if all three are equal at a location.

– -1 if two are equal and one is different

– -2 if all three are different.

• That’s at least natural.
– Might get complicated to extend this 

scoring scheme to many sequences.



Sum-of-Pairs Score (one position)
• Instead of scoring all possible N-tuples at a position, 

we can just sum all pairs using the usual pairwise-
alignment score.

• Suppose 𝑠 𝑥, 𝑦  is a pairwise alignment scoring 
function, with linear gap penalty, so one of 𝑥 or 𝑦 
could be an indel.

• For example:

• Then



Sum-of-Pairs 
Score (full 
alignment)

• The function s on the 
previous slide is to 
score on position of a 
multiple sequence 
alignment.

• To score the entire 
alignment you must 
sum s over all 
positions.

• This score works for 
any number of 
sequences.

EXAMPLE



Smith-Waterman

• With any scoring scheme, one 
could generalize Smith-Waterman 
to find a local multiple alignment 
with optimal score.

• If there are N sequences, this 
would involve filling in all the cells 
of an N-dimensional table.

• Then if aligning N sequences of 
length m, the complexity of this 
algorithm is O(mN).

• That quickly gets out of hand.



Many Long Sequences
• The multiple alignment shown in the genome browser 

involves large N and m.

• Here for example is a 20,000 base sequence of genome 
aligned across 39 species, as shown in the conservation track.
– This was not done with Smith-Waterman, or any other method that 

guarantees to find an optimal scoring alignment.



Heuristic Approaches

• A heuristic approach is one that does not 
guarantee to find the optimal.

– This is different from an 
“approximation algorithm” because 
those give you a handle on how far 
the solution is from optimal.

• In heuristics, you have no handle on 
that.

– But they can still be very useful 
when no fast alternative can be 
found.



Multiple Alignment Heuristics

Several completely different approaches have 
been taken to this problem.

Some examples are:

Hidden-Markov Models

Gibbs Sampling

Tree-Guided Progressive Alignment

Maximum Parsimony

We will focus on one of these that does not 
involve heavy machinery.



Progressive Alignment
• This is a strategy for building multiple alignments that starts 

by aligning two of the sequences.

• Then it aligns a third sequence to the pairwise alignment.

– We’ll have to talk about how that’s done, but it’s relatively 
straightforward.

• Then one by one it adds sequences to the multiple alignment.



Order 
Matters

Progressive alignment works best when 
you start with the two most similar 
sequences and align them first.

Then add the third sequence that is 
closest to the alignment of the first 
two.

Then add the fourth sequence that is 
closest to the alignment of the first 
three.

Etc.



Distance Between Sequences
• To define “close” we must have some concept of “distance” between two 

(related) sequences.

• Let S1 and S2 be two sequences.

• Suppose we have a pairwise scoring scheme s(S1 , S2 ).
– First, align the two sequences S1 and S2 with Needleman-Wunch to find an alignment 

with optimal (highest) score.

• Now define the distance between S1 and S2 to be:

d(S1 , S2 ) = number of mismatches/indels

         In the optimal alignment

– We still needed Needelman-Wunch to align them, but we do not use the score as 
distance.

• This behaves like a distance more than s does, because:

1. d is always positive

2. d(S1 , S2 ) = 0 if and only if S1 = S2.

3. The more distantly related the sequences, the bigger d is.



Distance Matrix

• Calculating the pairwise distance 
between all pairs of sequences 
gives us a matrix of distances.

• For example, suppose we have 
five sequences a, b, c, d, e.

– The matrix could look like the one 
shown here.



Phylogenetic Tree

• Suppose we had the phylogenetic tree 
showing the evolutionary relationship 
between the five sequences.

– This is called an “unrooted” tree, we 
do not know where inside this tree 
the ancestral species sits, nor the 
direction of evolution along the 
internal branches.

– There are three inferred ancestral 
“sequences” u, v and w.

– The numbers represent evolutionary 
distance, in some units.



Phylogenetic Tree Distances

• We calculate the distance between 
nodes in the tree by summing the 
distances of the edges connecting 
them.

• For example, the distance between 
a and c is 2+3+4=9.

• Notice, that is the same distance in 
the distance matrix that we found 
from the alignments.
– We say this is a “tree derived” 

distance.

• The trick is to go backwards, from 
the matrix to the tree.



Phylogenetic Tree 
Distances

• If there really is a tree that recovers the same 
distances as in the matrix, then (happily) we 
can find it.

• If there is no tree that gives the exact distance 
matrix, then the goal is to get as close as 
possible.

• This is the business of phylogenetics.

• A big business we don’t have time to go into 
very far.

• We will just look at one algorithm because it’s 
used in multiple sequence alignment.



Neighbor Joining

• Neighbor Joining depends on the following 
theorem:

• Suppose we have a set of sequences and a 
distance function d(x,y).

• Define 𝛿(𝑥, 𝑦) as follows.

• Then the x and y such that 𝛿(𝑥, 𝑦) is smallest 
are necessarily neighbors in the tree.



Neighbor Joining

• Start with the with a completely unresolved 
tree, whose topology corresponds to that of a 
star.



Finding First Neighbors

• Suppose a and b are the pair of sequences with 
minimal 𝛿.

– In other words, 𝛿 𝑎, 𝑏 ≤ 𝛿(𝑥, 𝑦) for any x and y.

•  Then we know a and b are neighbors, so that means 
the tree topology has to be like this.

– For some ancestral node u.



Adding Distances

• We next need to determine the distances x 
and y to the ancestral node u to a and b.



Clever Calculation #1
• We know

x + y = d(a,b) = 5.

• And,

     d(b,c) + d(b,d) + d(b,e) – d(a,c) – d(a,d) – 
d(a,e)

          = 3x – 3y.

• We can look those six distances up in 
the distance matrix, giving

10 + 10 + 9 – 9 – 9 – 8 = 3x – 3y

• Which simplifies to

  x – y = 1

Combine this with x + y = 5 gives:

x = 3, y = 2



Lather, Rinse, 
Repeat

• Now we need to determine the 
distance from u to the remaining 
nodes c, d, e.

– Once we know that, we have 
turned our five-node problem 
into a four-node problem.

– We repeat the process, until we 
get down to the last two nodes 
which must be neighbors..



Calculation #2
• We need to determine x + y because that 

is d(u,c).

d(b,c) = 3 + x + y

And we know d(b,c)=10 from the distance 
matrix.

Therefore, 

x + y = 7

• Thus, we have shown that d(u,c) = 7.
– Likewise, we can find d(u,d) and d(u,e).



Next Step

• This is a very 
efficient algorithm.

– Can align many 
long sequences 
very fast.

• Proceeding with the four nodes c, d, e and u 
the next pair of neighbors are d and e.

• Making similar calculations as before gives the 
final (unrooted) tree.



Example

• Let’s build a tree from 14 species.

– We’ll use the gene “interphotoreceptor 
retinoid binding protein” which is found in 
all 14.

– Here’s a piece of the alignment:



Distance Matrix

• The distance matrix looks like this.

– It has been normalized so all distances are 
between 0 and 1, but it’s essentially the same 
information as before.

– Notice is is symmetric.



Four Algorithms, Four Trees
• This shows how you can get different trees depending on algorithm.

– The tree also depends on the pairwise scoring function, because different ones can give 
different distance matrices.

• There are some consistencies between the trees however.

Neighbor Joining Maximum Parsimony Maximum Likelihood UPGMA



Guide Tree

• However, we get the tree, it can 
now be used to determine the 
order in which the sequences are 
progressively aligned.

• First all neighbors are aligned in 
pairwise alignments.

• Then they can be merged into 
alignments of four sequences.

– Etc., until all sequences are in 
one big multiple alignment.



ClustalW
• The app clustalW uses this neighbor-

joining/progressive alignment approach.

– But the devil is in the details.

• Nothing is ever as simple as it seems in class.

– We strip out a lot of the details to illustrate the main 
concepts.

– But it always requires tweaking and fine-tuning to get it to 
work well.

• There are numerous online servers for ClustalW, for 
example this one out of the European Bioinformatics 
Institute:

https://www.ebi.ac.uk/Tools/msa/clustalo/



Genes, Proteins, Sequences
- and Models -

• Consider a gene’s sequence.
• Now consider that same gene across all Eukaryotes.

– Say it’s a basic gene found in all species.
• These sequences are all different but they’re similar.
• Imagine if you had these sequence from enough 

species that you could make up your own novel ones 
that look like they belong to the family.

• Your brain is modeling the family.
• Now imagine writing a computer program to do it.
• You’d need some sort of “model” you can program.
• For some positions that might be easy, for example if 

it’s the same nucleotide in all species.
• For others you might mimic the frequencies of the 

four bases.
• You’d also have to figure out how to model indels so 

they resemble the ones in the family.
• This can be done with a Hidden Markov Model.



Hidden 
Markov 
Models

• A completely different approach to 
multiple alignment is to built 
something called a Hidden Markov 
Model (HMM).
– We will learn about Markov Models 

soon.  But not HMMs.

• A Hidden Markov Model is just a bit 
more complex and therefore allows 
for modeling more complex biological 
problems.



Hidden Markov Model Approach to 
Multiple Alignment

• You train the model parameters on the data.

– The data just consists of the unaligned 
sequences.

• Then there’s a way for each sequence to 
determine its shortest route through the 
model.

• Those shortest routes when put together 
determine a multiple alignment.

• We’re skipping the details for the high-level 
concept.



The Brazil Nut Effect

• Suppose you are tasked with placing 
different sized objects in a container so that 
no object is higher than another object that 
weighs more.

– To solve this problem exactly, you might have 
to weigh each object and place them 
methodically.

• But what if an approximate solution was 
acceptable.

• In this case you could just shake the 
container and let physics do its thing.

– Most of the largest objects will rise to the 
top and the smallest to the bottom.

• Gibbs Sampling is sort of like this, you start with something random and 
you create the right force (alignment score instead of gravity) and then 
you shake and a decent alignment falls out.



STOP HERE

• You are not responsible for the 
following material, pseudo-
counts and the Lawrence 
method.

• But it is another multiple 
sequence alignment method 
using yet another completely 
different approach.



Gibbs Sampling

• There’s a multiple alignment method 
that is basically an implementation of 
Gibbs Sampling, which uses Markov 
Chain theory.

– The details are beyond our scope 
here.

• It’s a (clever) heuristic approach to 
searching large spaces for points where 
a function of the space (into the real 
numbers) is optimized.

– This is done by bouncing around 
the space somewhat randomly, 
but in a way the makes 
‘interesting’ things more likely to 
be visited over time.



BLOCKS
(we will cover this time permitting)

• Next, we are going to look at a statistical 
method for finding the ungapped local 
alignments used to create the blocks for 
BLOSUM matrix construction.

– Introduced by Lawrence et al. (1993).



Counts and Pseudocounts

• Suppose we have a large population of three 
types of things: A, B and C.

– Say there are nA things of type A, nB of type B, and 
nC of type C.

• The probability of choosing A at random is

𝑝𝐴 =
𝑛𝐴

𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶

• Suppose we don’t know nA, nB or nC and we 
want to estimate them from data.



Counts and Pseudocounts

• We sample the population a N times and count.

• Suppose there are mA As, mB Bs and mC Cs in the sample.

• The natural estimates are

ෞ𝑝𝐴 =
𝑚𝐴

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

ෞ𝑝𝐵 =
𝑚𝐵

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

ෞ𝑝𝐶 =
𝑚𝐶

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

• Convince yourself that these sum to 1.



Rare Events
• But what if one of the things, say B is rare, so 

rare that we are unlikely to sample one in our 
random sample of size N.

• In that case, the count mb = 0 and as a result 
the estimated probability pb = 0.

– This can be undesirable in some situations, 
including in the Lawrence algorithm, as we shall 
see.



Pseudocounts

• This situation is often rectified by adding a 
natural number to each count, known as a 
pseudocount.

ෞ𝑝𝐴 =
𝑚𝐴 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

ෞ𝑝𝐵 =
𝑚𝐵 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

ෞ𝑝𝐶 =
𝑚𝐶 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

• Convince yourself that these also sum to 1.

• And they are now all greater than 0.



Pseudocounts
• Pseudocounts have a greater impact on smaller 

numbers.

• Adding 1 to the numerator and denominator of 0.05 / 
0.23

– Before: 0.2174

– After:    0.8536

• has a much greater effect than adding 1 to the 
numerator and denominator of 1247 / 8253

– Before: 0.1511

– After:    0.1512

• This will be important in RNA sequencing and gene 
quantification.



The Lawrence Method
- to create multiple alignments -

• Number the amino acids 1, 2, … , 20, and 
suppose that these have respective 
background frequencies p1, p2, … , p20.

• Given N protein sequences, of respective 
lengths L1, L2, … , LN, the aim is to find N 
segments of length W, one in each sequence, 
that are most similar to each other.

– For now, W is a fixed constant



The Lawrence Method

• There are 𝑆 = ς𝑗=1
𝑁 (𝐿𝑗 − 𝑊 + 1) possible 

choices for the respective locations of N 
segments of length W in the N respective 
sequences.

• It is assumed that N and the Lj are so large 
that a purely algorithmic approach is not 
feasible.

• The procedure consists of repeated iteration 
of a basic step.



The Lawrence Method
• The initial alignment can be chosen arbitrarily or as 

an initial guess of the best alignment.

• This consists of choosing the 
starting (leftmost) location in 
each of the N sequences.

– Which can be any position from 1 to 
Li – W + 1

• So, we start with a block array of 
letters W wide and N high.

• In each step one of the various sequences is chosen 
at random to be changed.

– We remove this sequence from the array



The Lawrence Method

• We’ll call the array after removal the ‘reduced array’

• Suppose that in the reduced array, amino acid j 
occurs cij times in the ith column.

• Define

𝑞𝑖𝑗 =
𝑐𝑖𝑗 + 𝑏𝑗

𝑁 − 1 + 𝐵
     where bj are pseudocounts and 𝐵 = σ 𝑏𝑗

• The qij’s sum to 1.



The Lawrence Method
• The aim of the step is to replace the original segment in 

the chosen row by a new segment in a way that tends to 
increase the overall quality of the alignment of the N 
resulting segments in the new array.

• Assume for concreteness that row 3 is chosen.

– There are L3 – W + 1  segments of length W  in sequence 3.

• Call the segment starting in position x in sequence 3 
“segment x.”

• Suppose the amino acids in the segment are x1, x2, …, xW.

• The probability of this ordered set of amino acids under 
the population frequencies is

 𝑃𝑥 = 𝑝𝑥1
∙  𝑝𝑥2

∙∙∙ 𝑝𝑥𝑊



Likelihood Ratio
• Px is the null hypothesis probability of the 

segment.

• We want to compare it to the alternative 
hypothesis probability derived from the 
current aligned block, with the one chosen 
sequence removed.

• This is given by

𝑄𝑥 = 𝑞1,𝑥1
∙  𝑞2,𝑥2

∙∙∙ 𝑞𝑊, 𝑥𝑊

• The likelihood ratio LR(x) is defined as

Qx / Px



Likelihood Ratio

• The numerator may be thought of as the 
probability of the sequence under the model 
reflecting the sequences in the current 
alignment.

• While the denominator is the probability of 
the sequence under “background” 
frequencies.

• We replace the segment in the chosen row 
with the segment x which has maximum LR(x).



Iteration
• As one step follows another the N segments in 

the block tend to become more similar to each 
other.

– Or in other words, to align better.

• This iterative procedure visits various possible 
alignments according to a random process, and 
thus does not systematically approach the 
“best” alignment.

– However, after many steps the best alignments tend 
to arise more and more frequently and hence be 
recognized.



The Pseudocounts
• If pseudocounts were not used and the probability 

estimate qij replaced by cij/(N - 1), then qij could be 
equal to zero, causing possibly excellent 
alignments to be skipped over in the random 
search.

• If we make each bi > 0 then the entire space of all 
possible blocks can be visited.

• The choice of the pseudocounts bj must be made 
subjectively.

– Lawrence et al. (1993) make the reasonable suggestion 
of making bj proportional to qj with proportionality 

constant 𝑁.
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