
Introduction to
Bioinformatics

Gregory R. Grant
Genetics Department
ggrant@pennmedicine.upenn.edu

ITMAT Bioinformatics Laboratory

University of Pennsylvania

Lecturer

Gregory R. Grant

Topic Six

Nucleic Acid Alignment:

Local and Multiple

Teaching Assistants

Fall 2023

mailto:ggrant@pennmedicine.upenn.edu

Local Alignment
• Global alignment only works when the two sequences

are related end-to-end.

• But more often one sequence is a subsequence of
another.

• If you want to locate a short 100-base sequencing read
in a 100 million base chromosome, Needleman-Wunch
would be useless.

– Not just because of efficiency, but because a global
alignment makes no sense in this context.

– A gene is a subsequence of a
chromosome.

– An exon is a subsequence of a transcript.

– A sequencing read is just a small piece of
a gene or a chromosome.

Local Alignment

A more flexible algorithm would be one that
doesn’t require all bases of both sequences to be
involved in the alignment.

Even so, the problem of finding a short read in a
long chromosome is so particular that it requires its
own algorithm, which we will look at later.

For now, we will maintain our focus on aligning two
relatively short sequences like two proteins or two
RNAs.

Functional Domains
• Typically, a protein has a few important stretches of amino

acids that perform some vital function (called ‘functional
domains’) and the rest of the amino acids separating these
stretches are just backbone.

• This figure shows a gene with two functional domains
• Those are the only conserved part of the gene’s sequence

between distantly related species of yeast.
• Due to how DNA can shuffle, the parts in between may not even be

related.

Local Alignment
• It could be that the stretches of sequence between the

functional domains has drifted so much that their
similarity is down to roughly 25%.

• At that point alignment between these segments is
impossible.
– Relatedness needs to be established by the conserved

domains.

• We need an algorithm where we can give both
sequences and it will find just the parts that align.

– We call this “local alignment”

Pfam

• Some argue that the fundamental
units of interest should not be whole
genes or proteins, but rather
“functional domains”

– These combine in different ways
to make full length proteins.

• This is the perspective taken by Pfam
where proteins are classified by their
functional (and structural) domains.

– The domains are modelled by
Hidden Markov Models, which
we will talk about briefly later in
this lecture.

Complexity
• There are orders of magnitude more possible local alignments

between two sequences than possible global alignments.
– All the global ones also count as local, plus a whole lot more.

• Yet there are still algorithms that achieve n2 complexity.

• That does not necessarily mean they run at the same speed.
– Just because two algorithms are both big O of n2 that does not

mean they run at the same speed.
– If the constant that bounds the limit is twice as big, then the

run time is still twice as long.
– But the constant does not depend on n and that’s the

important thing.

• Yet, the local alignment algorithms actually do run at the same
speed as global.

– Because they require filling in a very similar table.

Smith-Waterman
• The workhorse of optimal pairwise local alignment is

the Smith-Waterman algorithm, first published in 1981.

• Smith-Waterman is very similar to Needleman-Wunsch.

• There are two main differences.

– First, if the maximum of the three scores for a cell is
negative, then we put 0 in the cell, not the actual
max score.

– Second, you don’t (necessarily) start the traceback
in the bottom right corner and you don’t
(necessarily) end in the top left. See next slide.

Smith-Waterman
• Assume we have a scoring scheme.

– Larger numbers are better.

• The difference with Needleman-Wunsch traceback is that instead
of starting at the bottom right corner, you start in the cell with the
highest number and traceback only until you reach a cell that is 0
or negative.

• The initialization of
the first row and
column are all zeros.

• This example, copied
from Wikipedia,
illustrates the
process.

Greedy Algorithms

• We’re searching a (greater than)
exponential search space in
polynomial operations.

• Why does this work?

• It works because alignment is a
special class of problem which can be
broken down into a finite sequence
of problems where:

1. Finding the optimal solution at
each step along the way yields a
global optimal solution.

2. Given the optimal solution at step
n there’s a simple procedure for
finding the optimal solution for
step n+1.

Greedy
Algorithms

• Just because we construct an iterative algorithm that
appears to do the optimal thing at each step, that does
not mean it will be ‘globally’ optimal.

• It is the case with sequence alignment, but there’s a
mathematical proof we must do to know that for sure.

• For an example where a greedy strategy failes, consider
the travelling salesman problem of finding the shortest
route to visit n cities.

Greedy
Algorithms

• Suppose you must start in City 1.

• The greedy algorithm is as follows:
– Travel to the nearest city at each step.

• This algorithm does not guarantee the shortest
route overall.

This is the route the greedy

algorithm would return

But this is the shortest route

Nucleic Acid Alignment
• There are many applications of nucleic acid alignment.

– In different contexts it requires very different considerations. There’s can be
no “one algorithm fits all”

– Here are some examples to illustrate how varied the problem is.

1. Align short (gene length or shorter sequences) to each other, to infer their
evolutionary relationship.

– In this case identity may be quite low.

– Use this to search a database to find related sequences to a sequence in
hand.

2. Align sequenced fragments of a gene or chromosome to each other, to assemble
them into “contigs”.

– In this case identity should be quite high, near 100%

3. Find the location of a gene in a genome.

– We may have the RNA of an unknown gene and want to find it in the DNA.

– In this case identity should be high.

4. Comparative Genomics

– Align entire chromosomes from different species.

Low Complexity
Sequence

• Low complexity sequence is sequence
with short patterns.

• A simple example is:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• Suppose you are searching for a gene
which had this sequence of A’s in it and
this stretch of A’s was all that aligned.

– We would not be very convinced
the sequences are related, even
though it’s 30 bases long, so
should not occur more than once
in random sequence, it’s obviously
not random.

Modeling
DNA/RNA

with
Random

Sequence

• We tend to model DNA and RNA by random
independently and identically distributed bases.

– Imagine rolling a four-sided die a bunch of
times in a row.

• We use this “random” model to assess the
significance of things.

– You’ll see, this will be a recurring theme.

• In random sequence, a string of 30 A’s in a row
would be unlikely.

– But in DNA it happens frequently, because
DNA is not random.

• Therefore, we must be careful when using this
model to assess likelihoods.

Random
Sequence

• ‘S’ for
sequence, ‘G’
for genome.

Suppose the
problem at hand

is to find the
location of a

small sequence
S within a large

sequence G.

• 43 = 64
How many

sequences are
there of length

3?

• To 3 decimal
places, it’s
0.786

If S has length 3
and G is a
random

sequence of
length 100, what
is the probability
of finding S in G?

Random Sequence

• There are 1,048,576 sequences of length 10.

• There are 4,294,967,296 sequences of length 16.

• There are 1,099,511,627,776 sequences of length 20.

Given the human genome
is 3.4 Gb, how long does a
subsequence need to be in
order to be unlikely to be

found just by chance?

So somewhere between
16 and 20.

Repeat Sequence
• Nucleic acid sequence as found in nature is not random.

– It is highly structured.

– And it is full of so-called “repeats” and “low complexity
sequence”.

• Some elements in the genome like to duplicate
themselves, ALU for example, a sequence of about 300
bases that occurs over 1,000,000 times in the human
genome.

Human genome stained for ALU elements

P-Values

• An alignment is not interesting if we would not be
surprised to find it between two unrelated sequences
of the same sizes.

• In the age of big data, alignments with high scores
happen if you give them enough chances to happen.

• To handle this, we will require p-values.

– Which will require a null probabilistic model of
sequence.

– That’s where random sequence comes in.

• When we do this, it will be particularly important to
handle repeat and low-complexity sequence properly.

– Otherwise, an alignment of a stretch of 25 A’s in a
row would be considered highly significant.

Multiple Alignment
• If you zoom in far enough on the conservation track, it

shows a multiple sequence alignment across many
species.

Multiple Alignment
• You may never realize how important those first two nucleotide

bases of the intron are until you see this.
– Nothing else in the intron is conserved across primates, fish and birds.

Algorithms

• Let’s try to lift the concepts developed for
pairwise alignment to the problem of multiple
alignment.

• First off, we need a scoring scheme.

• How should that work when we have multiple
sequences?

• To build some intuition, let’s first consider three
sequences aligned together. Could set:

– +1 if all three are equal at a location.

– -1 if two are equal and one is different

– -2 if all three are different.

• That’s at least natural.
– Might get complicated to extend this

scoring scheme to many sequences.

Sum-of-Pairs Score (one position)
• Instead of scoring all possible N-tuples at a position,

we can just sum all pairs using the usual pairwise-
alignment score.

• Suppose 𝑠 𝑥, 𝑦 is a pairwise alignment scoring
function, with linear gap penalty, so one of 𝑥 or 𝑦
could be an indel.

• For example:

• Then

Sum-of-Pairs
Score (full
alignment)

• The function s on the
previous slide is to
score on position of a
multiple sequence
alignment.

• To score the entire
alignment you must
sum s over all
positions.

• This score works for
any number of
sequences.

EXAMPLE

Smith-Waterman

• With any scoring scheme, one
could generalize Smith-Waterman
to find a local multiple alignment
with optimal score.

• If there are N sequences, this
would involve filling in all the cells
of an N-dimensional table.

• Then if aligning N sequences of
length m, the complexity of this
algorithm is O(mN).

• That quickly gets out of hand.

Many Long Sequences
• The multiple alignment shown in the genome browser

involves large N and m.

• Here for example is a 20,000 base sequence of genome
aligned across 39 species, as shown in the conservation track.
– This was not done with Smith-Waterman, or any other method that

guarantees to find an optimal scoring alignment.

Heuristic Approaches

• A heuristic approach is one that does not
guarantee to find the optimal.

– This is different from an
“approximation algorithm” because
those give you a handle on how far
the solution is from optimal.

• In heuristics, you have no handle on
that.

– But they can still be very useful
when no fast alternative can be
found.

Multiple Alignment Heuristics

Several completely different approaches have
been taken to this problem.

Some examples are:

Hidden-Markov Models

Gibbs Sampling

Tree-Guided Progressive Alignment

Maximum Parsimony

We will focus on one of these that does not
involve heavy machinery.

Progressive Alignment
• This is a strategy for building multiple alignments that starts

by aligning two of the sequences.

• Then it aligns a third sequence to the pairwise alignment.

– We’ll have to talk about how that’s done, but it’s relatively
straightforward.

• Then one by one it adds sequences to the multiple alignment.

Order
Matters

Progressive alignment works best when
you start with the two most similar
sequences and align them first.

Then add the third sequence that is
closest to the alignment of the first
two.

Then add the fourth sequence that is
closest to the alignment of the first
three.

Etc.

Distance Between Sequences
• To define “close” we must have some concept of “distance” between two

(related) sequences.

• Let S1 and S2 be two sequences.

• Suppose we have a pairwise scoring scheme s(S1 , S2).
– First, align the two sequences S1 and S2 with Needleman-Wunch to find an alignment

with optimal (highest) score.

• Now define the distance between S1 and S2 to be:

d(S1 , S2) = number of mismatches/indels

 In the optimal alignment

– We still needed Needelman-Wunch to align them, but we do not use the score as
distance.

• This behaves like a distance more than s does, because:

1. d is always positive

2. d(S1 , S2) = 0 if and only if S1 = S2.

3. The more distantly related the sequences, the bigger d is.

Distance Matrix

• Calculating the pairwise distance
between all pairs of sequences
gives us a matrix of distances.

• For example, suppose we have
five sequences a, b, c, d, e.

– The matrix could look like the one
shown here.

Phylogenetic Tree

• Suppose we had the phylogenetic tree
showing the evolutionary relationship
between the five sequences.

– This is called an “unrooted” tree, we
do not know where inside this tree
the ancestral species sits, nor the
direction of evolution along the
internal branches.

– There are three inferred ancestral
“sequences” u, v and w.

– The numbers represent evolutionary
distance, in some units.

Phylogenetic Tree Distances

• We calculate the distance between
nodes in the tree by summing the
distances of the edges connecting
them.

• For example, the distance between
a and c is 2+3+4=9.

• Notice, that is the same distance in
the distance matrix that we found
from the alignments.
– We say this is a “tree derived”

distance.

• The trick is to go backwards, from
the matrix to the tree.

Phylogenetic Tree
Distances

• If there really is a tree that recovers the same
distances as in the matrix, then (happily) we
can find it.

• If there is no tree that gives the exact distance
matrix, then the goal is to get as close as
possible.

• This is the business of phylogenetics.

• A big business we don’t have time to go into
very far.

• We will just look at one algorithm because it’s
used in multiple sequence alignment.

Neighbor Joining

• Neighbor Joining depends on the following
theorem:

• Suppose we have a set of sequences and a
distance function d(x,y).

• Define 𝛿(𝑥, 𝑦) as follows.

• Then the x and y such that 𝛿(𝑥, 𝑦) is smallest
are necessarily neighbors in the tree.

Neighbor Joining

• Start with the with a completely unresolved
tree, whose topology corresponds to that of a
star.

Finding First Neighbors

• Suppose a and b are the pair of sequences with
minimal 𝛿.

– In other words, 𝛿 𝑎, 𝑏 ≤ 𝛿(𝑥, 𝑦) for any x and y.

• Then we know a and b are neighbors, so that means
the tree topology has to be like this.

– For some ancestral node u.

Adding Distances

• We next need to determine the distances x
and y to the ancestral node u to a and b.

Clever Calculation #1
• We know

x + y = d(a,b) = 5.

• And,

 d(b,c) + d(b,d) + d(b,e) – d(a,c) – d(a,d) –
d(a,e)

 = 3x – 3y.

• We can look those six distances up in
the distance matrix, giving

10 + 10 + 9 – 9 – 9 – 8 = 3x – 3y

• Which simplifies to

 x – y = 1

Combine this with x + y = 5 gives:

x = 3, y = 2

Lather, Rinse,
Repeat

• Now we need to determine the
distance from u to the remaining
nodes c, d, e.

– Once we know that, we have
turned our five-node problem
into a four-node problem.

– We repeat the process, until we
get down to the last two nodes
which must be neighbors..

Calculation #2
• We need to determine x + y because that

is d(u,c).

d(b,c) = 3 + x + y

And we know d(b,c)=10 from the distance
matrix.

Therefore,

x + y = 7

• Thus, we have shown that d(u,c) = 7.
– Likewise, we can find d(u,d) and d(u,e).

Next Step

• This is a very
efficient algorithm.

– Can align many
long sequences
very fast.

• Proceeding with the four nodes c, d, e and u
the next pair of neighbors are d and e.

• Making similar calculations as before gives the
final (unrooted) tree.

Example

• Let’s build a tree from 14 species.

– We’ll use the gene “interphotoreceptor
retinoid binding protein” which is found in
all 14.

– Here’s a piece of the alignment:

Distance Matrix

• The distance matrix looks like this.

– It has been normalized so all distances are
between 0 and 1, but it’s essentially the same
information as before.

– Notice is is symmetric.

Four Algorithms, Four Trees
• This shows how you can get different trees depending on algorithm.

– The tree also depends on the pairwise scoring function, because different ones can give
different distance matrices.

• There are some consistencies between the trees however.

Neighbor Joining Maximum Parsimony Maximum Likelihood UPGMA

Guide Tree

• However, we get the tree, it can
now be used to determine the
order in which the sequences are
progressively aligned.

• First all neighbors are aligned in
pairwise alignments.

• Then they can be merged into
alignments of four sequences.

– Etc., until all sequences are in
one big multiple alignment.

ClustalW
• The app clustalW uses this neighbor-

joining/progressive alignment approach.

– But the devil is in the details.

• Nothing is ever as simple as it seems in class.

– We strip out a lot of the details to illustrate the main
concepts.

– But it always requires tweaking and fine-tuning to get it to
work well.

• There are numerous online servers for ClustalW, for
example this one out of the European Bioinformatics
Institute:

https://www.ebi.ac.uk/Tools/msa/clustalo/

Genes, Proteins, Sequences
- and Models -

• Consider a gene’s sequence.
• Now consider that same gene across all Eukaryotes.

– Say it’s a basic gene found in all species.
• These sequences are all different but they’re similar.
• Imagine if you had these sequence from enough

species that you could make up your own novel ones
that look like they belong to the family.

• Your brain is modeling the family.
• Now imagine writing a computer program to do it.
• You’d need some sort of “model” you can program.
• For some positions that might be easy, for example if

it’s the same nucleotide in all species.
• For others you might mimic the frequencies of the

four bases.
• You’d also have to figure out how to model indels so

they resemble the ones in the family.
• This can be done with a Hidden Markov Model.

Hidden
Markov
Models

• A completely different approach to
multiple alignment is to built
something called a Hidden Markov
Model (HMM).
– We will learn about Markov Models

soon. But not HMMs.

• A Hidden Markov Model is just a bit
more complex and therefore allows
for modeling more complex biological
problems.

Hidden Markov Model Approach to
Multiple Alignment

• You train the model parameters on the data.

– The data just consists of the unaligned
sequences.

• Then there’s a way for each sequence to
determine its shortest route through the
model.

• Those shortest routes when put together
determine a multiple alignment.

• We’re skipping the details for the high-level
concept.

The Brazil Nut Effect

• Suppose you are tasked with placing
different sized objects in a container so that
no object is higher than another object that
weighs more.

– To solve this problem exactly, you might have
to weigh each object and place them
methodically.

• But what if an approximate solution was
acceptable.

• In this case you could just shake the
container and let physics do its thing.

– Most of the largest objects will rise to the
top and the smallest to the bottom.

• Gibbs Sampling is sort of like this, you start with something random and
you create the right force (alignment score instead of gravity) and then
you shake and a decent alignment falls out.

STOP HERE

• You are not responsible for the
following material, pseudo-
counts and the Lawrence
method.

• But it is another multiple
sequence alignment method
using yet another completely
different approach.

Gibbs Sampling

• There’s a multiple alignment method
that is basically an implementation of
Gibbs Sampling, which uses Markov
Chain theory.

– The details are beyond our scope
here.

• It’s a (clever) heuristic approach to
searching large spaces for points where
a function of the space (into the real
numbers) is optimized.

– This is done by bouncing around
the space somewhat randomly,
but in a way the makes
‘interesting’ things more likely to
be visited over time.

BLOCKS
(we will cover this time permitting)

• Next, we are going to look at a statistical
method for finding the ungapped local
alignments used to create the blocks for
BLOSUM matrix construction.

– Introduced by Lawrence et al. (1993).

Counts and Pseudocounts

• Suppose we have a large population of three
types of things: A, B and C.

– Say there are nA things of type A, nB of type B, and
nC of type C.

• The probability of choosing A at random is

𝑝𝐴 =
𝑛𝐴

𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶

• Suppose we don’t know nA, nB or nC and we
want to estimate them from data.

Counts and Pseudocounts

• We sample the population a N times and count.

• Suppose there are mA As, mB Bs and mC Cs in the sample.

• The natural estimates are

ෞ𝑝𝐴 =
𝑚𝐴

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

ෞ𝑝𝐵 =
𝑚𝐵

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

ෞ𝑝𝐶 =
𝑚𝐶

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶

• Convince yourself that these sum to 1.

Rare Events
• But what if one of the things, say B is rare, so

rare that we are unlikely to sample one in our
random sample of size N.

• In that case, the count mb = 0 and as a result
the estimated probability pb = 0.

– This can be undesirable in some situations,
including in the Lawrence algorithm, as we shall
see.

Pseudocounts

• This situation is often rectified by adding a
natural number to each count, known as a
pseudocount.

ෞ𝑝𝐴 =
𝑚𝐴 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

ෞ𝑝𝐵 =
𝑚𝐵 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

ෞ𝑝𝐶 =
𝑚𝐶 + 𝑏

𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶 + 3𝑏

• Convince yourself that these also sum to 1.

• And they are now all greater than 0.

Pseudocounts
• Pseudocounts have a greater impact on smaller

numbers.

• Adding 1 to the numerator and denominator of 0.05 /
0.23

– Before: 0.2174

– After: 0.8536

• has a much greater effect than adding 1 to the
numerator and denominator of 1247 / 8253

– Before: 0.1511

– After: 0.1512

• This will be important in RNA sequencing and gene
quantification.

The Lawrence Method
- to create multiple alignments -

• Number the amino acids 1, 2, … , 20, and
suppose that these have respective
background frequencies p1, p2, … , p20.

• Given N protein sequences, of respective
lengths L1, L2, … , LN, the aim is to find N
segments of length W, one in each sequence,
that are most similar to each other.

– For now, W is a fixed constant

The Lawrence Method

• There are 𝑆 = ς𝑗=1
𝑁 (𝐿𝑗 − 𝑊 + 1) possible

choices for the respective locations of N
segments of length W in the N respective
sequences.

• It is assumed that N and the Lj are so large
that a purely algorithmic approach is not
feasible.

• The procedure consists of repeated iteration
of a basic step.

The Lawrence Method
• The initial alignment can be chosen arbitrarily or as

an initial guess of the best alignment.

• This consists of choosing the
starting (leftmost) location in
each of the N sequences.

– Which can be any position from 1 to
Li – W + 1

• So, we start with a block array of
letters W wide and N high.

• In each step one of the various sequences is chosen
at random to be changed.

– We remove this sequence from the array

The Lawrence Method

• We’ll call the array after removal the ‘reduced array’

• Suppose that in the reduced array, amino acid j
occurs cij times in the ith column.

• Define

𝑞𝑖𝑗 =
𝑐𝑖𝑗 + 𝑏𝑗

𝑁 − 1 + 𝐵
 where bj are pseudocounts and 𝐵 = σ 𝑏𝑗

• The qij’s sum to 1.

The Lawrence Method
• The aim of the step is to replace the original segment in

the chosen row by a new segment in a way that tends to
increase the overall quality of the alignment of the N
resulting segments in the new array.

• Assume for concreteness that row 3 is chosen.

– There are L3 – W + 1 segments of length W in sequence 3.

• Call the segment starting in position x in sequence 3
“segment x.”

• Suppose the amino acids in the segment are x1, x2, …, xW.

• The probability of this ordered set of amino acids under
the population frequencies is

 𝑃𝑥 = 𝑝𝑥1
∙ 𝑝𝑥2

∙∙∙ 𝑝𝑥𝑊

Likelihood Ratio
• Px is the null hypothesis probability of the

segment.

• We want to compare it to the alternative
hypothesis probability derived from the
current aligned block, with the one chosen
sequence removed.

• This is given by

𝑄𝑥 = 𝑞1,𝑥1
∙ 𝑞2,𝑥2

∙∙∙ 𝑞𝑊, 𝑥𝑊

• The likelihood ratio LR(x) is defined as

Qx / Px

Likelihood Ratio

• The numerator may be thought of as the
probability of the sequence under the model
reflecting the sequences in the current
alignment.

• While the denominator is the probability of
the sequence under “background”
frequencies.

• We replace the segment in the chosen row
with the segment x which has maximum LR(x).

Iteration
• As one step follows another the N segments in

the block tend to become more similar to each
other.

– Or in other words, to align better.

• This iterative procedure visits various possible
alignments according to a random process, and
thus does not systematically approach the
“best” alignment.

– However, after many steps the best alignments tend
to arise more and more frequently and hence be
recognized.

The Pseudocounts
• If pseudocounts were not used and the probability

estimate qij replaced by cij/(N - 1), then qij could be
equal to zero, causing possibly excellent
alignments to be skipped over in the random
search.

• If we make each bi > 0 then the entire space of all
possible blocks can be visited.

• The choice of the pseudocounts bj must be made
subjectively.

– Lawrence et al. (1993) make the reasonable suggestion
of making bj proportional to qj with proportionality

constant 𝑁.

	Slide 1: Introduction to Bioinformatics
	Slide 2: Local Alignment
	Slide 3: Local Alignment
	Slide 4: Functional Domains
	Slide 5: Local Alignment
	Slide 6: Pfam
	Slide 7: Complexity
	Slide 8: Smith-Waterman
	Slide 9: Smith-Waterman
	Slide 10: Greedy Algorithms
	Slide 11: Greedy Algorithms
	Slide 12: Greedy Algorithms
	Slide 13: Nucleic Acid Alignment
	Slide 14: Low Complexity Sequence
	Slide 15: Modeling DNA/RNA with Random Sequence
	Slide 16: Random Sequence
	Slide 17: Random Sequence
	Slide 18: Repeat Sequence
	Slide 19: P-Values
	Slide 20: Multiple Alignment
	Slide 21: Multiple Alignment
	Slide 22: Algorithms
	Slide 23: Sum-of-Pairs Score (one position)
	Slide 24: Sum-of-Pairs Score (full alignment)
	Slide 25: Smith-Waterman
	Slide 26: Many Long Sequences
	Slide 27: Heuristic Approaches
	Slide 28: Multiple Alignment Heuristics
	Slide 29: Progressive Alignment
	Slide 30: Order Matters
	Slide 31: Distance Between Sequences
	Slide 32: Distance Matrix
	Slide 33: Phylogenetic Tree
	Slide 34: Phylogenetic Tree Distances
	Slide 35: Phylogenetic Tree Distances
	Slide 36: Neighbor Joining
	Slide 37: Neighbor Joining
	Slide 38: Finding First Neighbors
	Slide 39: Adding Distances
	Slide 40: Clever Calculation #1
	Slide 41: Lather, Rinse, Repeat
	Slide 42: Calculation #2
	Slide 43: Next Step
	Slide 44: Example
	Slide 45: Distance Matrix
	Slide 46: Four Algorithms, Four Trees
	Slide 47: Guide Tree
	Slide 48: ClustalW
	Slide 49: Genes, Proteins, Sequences - and Models -
	Slide 50: Hidden Markov Models
	Slide 51: Hidden Markov Model Approach to Multiple Alignment
	Slide 52: The Brazil Nut Effect
	Slide 53: STOP HERE
	Slide 54: Gibbs Sampling
	Slide 55: BLOCKS (we will cover this time permitting)
	Slide 56: Counts and Pseudocounts
	Slide 57: Counts and Pseudocounts
	Slide 58: Rare Events
	Slide 59: Pseudocounts
	Slide 60: Pseudocounts
	Slide 61: The Lawrence Method - to create multiple alignments -
	Slide 62: The Lawrence Method
	Slide 63: The Lawrence Method
	Slide 64: The Lawrence Method
	Slide 65: The Lawrence Method
	Slide 66: Likelihood Ratio
	Slide 67: Likelihood Ratio
	Slide 68: Iteration
	Slide 69: The Pseudocounts

