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Biomolecules

• Biological molecules fall into four major 
categories.

• We’ve talked about nucleic acid; we turn our 
attention now to Proteins.



Protein

• Proteins are 
involved in both 
structure and 
function.

• Proteins are the most abundant 
organic molecules in an 
organism.

– Making up about 50% of the dry 
weight of a cell.



Amino Acids

• Amino acids have various 
chemical properties that 
determine the protein’s 
shape and function. 

• Proteins are constructed by 
attaching amino together in a 
chain.

– There are 20 amino acids.

– Some obscure organisms have 21



Structure

• A protein’s amino acid sequence is called its 
“primary structure”.

• But they fold up and combine into complex 
shapes.

• The ultimate 
structure is described 
hierarchically.

– There are four levels 
in the hierarchy.



Primary Structure
• The primary structure refers 

to the number and linear 
sequence of amino acids in 
the polypeptide chain and the 
location of the disulphide 
bridges.

– Disulfide bridges are covalent 
links between the Sulphur 
atoms of two cysteine amino 
acids.

– Their formation stabilizes the 
tertiary and higher order 
structure of proteins.



Secondary Structure
• The linear chain folds into three types of coiled 

structures:

– α-helix, β-sheet, Collagen-helix



Tertiary Structure

• The helical polypeptide folds in upon itself to 
assume a complex, but specific, form.



Quaternary Structure

• Quaternary structure 
is when two or more 
proteins (polypeptide 
chains) combine into a 
complex. 

• Hemoglobin, for 
example, consists of 
four proteins.



Protein Structure Inference
• An active domain of computational biology is 

the inference of protein structure.

• Given just the sequence of amino acids, 
determine the protein’s secondary and 
tertiary structures.



CASP

• A competition is held biannually (once every two 
years).

• Contestants are given only the amino acid sequence of 
a protein.

– Whose structure, which has been determined the hard way, 
is known only to the judges.

• Contestants submit an algorithm and the one that 
achieves the closest structure to the truth wins.

• This is extremely competitive and winning is extremely 
good for your career.



CASP 2020

• CASP 2020 was won by Google.

– “An artificial intelligence (AI) 
network developed by Google AI 
offshoot DeepMind has made a 
gargantuan leap in solving one of 
biology’s grandest challenges — 
determining a protein’s 3D shape 
from its amino-acid sequence.”

– “DeepMind’s program, called AlphaFold, outperformed 
around 100 other teams in a biennial protein-structure 
prediction challenge called CASP.”



Protein Alignment

• Our focus in protein space will be on 
alignment.

• On its face, alignment of proteins is a 
similar problem to alignment of 
nucleic acids.
– Just a different alphabet, 20 letters 

instead of 4.
• In some ways it’s simpler.

– Proteins are always relatively 
short.

– Proteins are less burdened by low 
complexity or repeat sequence.

– Shorter alignments can be 
significant.
• Since there’s an alphabet of 

20.
• There are 25,600,000,000 

possible peptides of length 8.



Evolution

• When we align proteins, most of the 
time it is because we are interested 
in their evolutionary relationship.

• Unlike nucleotides in nucleic acid, 
amino acids tend to be more 
interchangeable.

– For example, two amino acid 
sequences could be determined 
to be related, even if every one of 
the individual amino acids have 
changed. 



Amino Acids
• Amino acids with the same chemical properties, can often 

substitute for each other without changing the function of the 
protein.



Impact on Alignment

• But these probabilities depend on the 
evolutionary distance between the two 
sequences being aligned.

– This creates somewhat of a catch-22 
situation.

– But don’t worry, we will bootstrap our 
way out of that problem, as best as we 
can, later.

• How do we account for this extra flexibility in alignment?

– It’s a problem that is handled by the choice of a good scoring scheme.

• We must define the right scoring scheme that reflects the different substitution 
probabilities of the 20 amino acids.



Substitution Matrices

• A substitution matrix is a 20x20 matrix 
which tabulates scores for each of the 
possible substitutions.

– A scoring scheme in general is a 
substitution matrix together with a gap 
penalty function.

– This includes things which ‘substitute’ 
for themselves (to be found on the 
main diagonal of the matrix).

– There is no directionality however, so 
the matrix is symmetric across the 
diagonal.

• This means we assume it’s equally 
likely that amino acid A substitutes 
for B as it is that amino acid B 
substitutes for A.



The PAM250 Substitution Matrix

• Notice it’s as likely 
a B becomes a D 
as it is to stay a B.

– That is why a true 
evolutionarily 
correct alignment 
can be largely or 
entirely 
mismatches.



Impact on Needleman-Wunsch

• The only difference 
is the score of a 
mismatch is taken 
from the amino-
acid substitution 
matrix.

– The score for D/L is 
-4.



Impact on Needleman-Wunsch

• The score for D/L is -4.

– Assume a gap penalty of 
-1

• Therefore, along the 
diagonal we get:

0 − 4 = −4

• And coming from the 
horizontal or vertical 
we get

−1 − 1 = −2



Impact on Needleman-Wunsch

• The maximum of -2 
and -4 is -2.



Counting

• Suppose there are just two amino acids A and B.

• In creating substitution matrices, we must estimate the 
probability pAB that A changes into B in one generation.

• Suppose we have data
– E.g., a protein of length 1000 in parent and offspring.

• Suppose A changed into B a total of 17 times.

• Is that enough information to estimate the probability pAB ?



Probabilities

• It is not enough information to estimate the probability pAB ?
– We also need to know how many As were in the 1000 positions to begin with.

• If there were 200 As, then

pAB = 17 / 200

• Let pA = 200 /1000 = 0.2, the frequency of A’s

• And pB =  800/1000 = 0.8, the frequency of B’s

– We call these the ‘background frequencies’ of A and B.



Null Hypothesis Probabilities

• Consider lining up two random 
sequences of 1000 As and Bs (without 
gaps) generated according to the 
background frequencies.
– Assume pA is the background frequency of A’s in 

the first sequence and pB is the background 
frequency of B’s in the second sequence. 

• Then the probability that an A in the first 
sequence is aligned with a B in the 
second, at any given location, is 2 pA pB 

• This is the null hypothesis probability of 
A’s aligning with B’s, assuming there is no 
actual relationship between the 
sequences.



Likelihood Ratios
• We consider a substitution as “likely” if it is 

occurring more often than by chance, where “by 
chance” is the null hypothesis probability as 
defined on the previous slide.

– And unlikely if it is occurring less often than chance.

• This is quantified in the ratio



Scores

• We convert the likelihood ratio into a score by taking -2 times the 
log base 2 and rounding to the nearest integer.

round(−2 log2 𝐿𝑅)

• In this way pairs that are more likely than chance will have positive 
scores, and those less likely will have negative scores.

• The use of the log of the likelihood ratio is more than just intuitive.

– It can be justified rigorously by using theory from statistical 
hypothesis testing and random walks.

• Which is unfortunately beyond the scope of this class.



PAM and BLOSUM

Substitution matrices come in families.

• Indexed by natural numbers (e.g. PAM250)

• We will see why shortly.

There are two standard approaches that utilize different 
mathematical procedures.

• PAM (Accepted Point Mutation)

• BLOSUM (BLOcks SUbstitution Matrices)

Both methods start from a set of ‘training’ 
data that can (hopefully) be trusted.

The data and statistical methods are used to infer the 
likelihood ratios which are then translated into ‘scores’.

• These scores are the elements of the matrix.



History

• PAM

– Accepted Point Mutation

– Dayhoff 1978

• BLOSUM

– BLOcks SUbstitution Matrices

– Henikoff and Henikoff 1992

Margaret Dayhoff

Steven Henikoff



BLOSUM

BLOSUM substitution matrices are more 
recent than PAM but use a more 
straightforward approach which we will 
describe in some detail.

BLOSUM, unlike PAM, does not us the 
machinery of Markov Chains.

BLOSUM starts with a set of with a set of protein sequences from 
public databases that have been grouped into related families.

• A block is the un-gapped alignment of a 
relatively highly conserved region of a 
family of proteins.

– We shall see later how to obtain these blocks 
when we study multiple sequence alignment.



Example of some Real BLOCKS



Circularity

• Algorithms used to construct aligned 
blocks employ substitution matrices.

• Henikoff and Henikoff broke this 
circularity as follows:
– They started by using a simple 

“unitary" substitution matrix where 
the score is 1 for a match, 0 for a 
mismatch.

– They then constructed only those 
blocks that they could obtain with this 
simple matrix.

– This procedure has the effect of 
generating a conservative set of 
blocks; that is, it tends to omit blocks 
with low sequence identity



Blocks

• This restricts the blocks to ones that are 
reasonably trustworthy and not biased toward 
any specific scoring scheme.

• Using the blocks so constructed, Henikoff
 and Henikoff then count:

1. The number of occurrences of each 
amino acid
• To estimate the ‘background’ 

probabilities.
    
2. The number of occurrences of each pair 

of amino acids aligned in the same 
column.
• To estimate the ‘foreground’ 

probabilities.



Simple Example
• Suppose there are only three amino acids A, B, 

and C.

• And only one block

• In this block there 
are 24 amino acids:
– 14 are A
– 4 are B
– 6 are C

• Thus, the observed proportions are



BLOSUM Example 1

• There are 4 6
2

= 60 aligned pairs of amino 

acids in the block.

• These 60 pairs occur with proportions as given 
in the following table:



BLOSUM Example 1

• We next compare these observed proportions to:

– The expected (null background probability) 
proportion of times that each amino acid pair is 
aligned given two random sequences.

• generated with the estimated background frequencies.

– The expected proportion of pairs in which A is aligned 

with A is  
14

24
∙

14

24
 

– The expected proportion of pairs in which A is aligned 

with B is 2 ∙
14

24
∙

4

24
 

– and so on.



BLOSUM Example 1

• These fractions are now used to calculate 
“estimated likelihood ratios" as shown in the 
following table:



BLOSUM Example 1

• the respective elements in the BLOSUM 
substitution matrix are found by rounding the 
numbers in the 4th column to the nearest 
integer.

• In this simplified example, the substitution 
matrix would thus be



Bias in the Simple Approach

• This rudimentary approach does yield a useful scoring 
scheme.
– It is certainly better than one that merely scores 1 for a match and 

0 for a mismatch.

• But it overlooks an important factor that can bias the 
results.

• The substitution matrix will depend significantly on which 
sequences of each family happen to be in the database 
used to create the blocks.
– If there are many very closely related proteins in one block, and 

only a few others that are less closely related, then the 
contribution of that block will be biased toward closely related 
proteins.



Bias Example
• Suppose the data in one block are as follows

• The first four sequences possibly derive from closely 
related species and the last three from three more 
distant species.

• Since A occurs with high frequency in the first four 
sequences, the observed number of pairings of A with 
A will be higher than is appropriate if we are 
comparing distantly related sequences.



Strategy to Overcome the Bias
• Ultimately, it would be preferable to include 

sequences in each block so that any pair of them 
have roughly the same amount of “evolutionary 
distance” between them.

• We could throw out three of them 
and just keep one.

– But we would lose some information 
if the sequences were close but not 
identical.

• Instead, the first four rows will be 
“clustered” and treated as one 
‘unit’



Clustering in Blocks
- to overcome the bias -

• The solution employed by Henikoff and 
Henikoff is to group, or cluster, those 
sequences in each block that are “sufficiently 
close” to each other.

– Then, treat the resulting cluster as a single 
sequence.

• First, we need a definition of “sufficiently 
close.”



“Sufficiently Close”

• We specify a cut-off proportion, say 85%, and 
then group the sequences in each block into 
clusters in such a way that:

– each sequence in any cluster has 85% or higher 
sequence identity to at least one other sequence 
in the cluster in that block.



Counting individual 
amino acids: 

• The count of each amino acid 
is found by dividing each 
occurrence by the number of 
sequences in the cluster 
containing that occurrence.
– Then summing over all 

occurrences.
– Don’t worry, this will be clear 

once we do an example.

• These weighted counts are 
then used as before



Counting 
pairs of 
amino 
acids: 

• If in any block two sequences are in the 
same cluster, then:

– In that block no counts are taken 
between amino acids in those two 
sequences.

• For any aligned amino acids in sequences in 
two different clusters, then:

– The count for any amino acid pair is 
divided by nm, where n and m are the 
sizes of the two clusters from which the 
amino acids are taken.

• These weighted counts are then used as 
before



BLOSUM Example 2
• We will work a simple example with two blocks

• We’ll set the identity for clustering to be 0.75.

– Thus, we cluster the first two sequences in each block 
together.



BLOSUM Example 2
- Total Symbol Count -

• We’ve grouped the first two rows of block 1.

– Thus, each column contributes 2 to the total counts of the 
symbols.

• Similarly, each column of the second block contributes 3.

• Thus, the total count of symbols is 17



BLOSUM Example 2
- Counting individual Symbols -

• The As are counted as follows.

• Block 1:
– The first column has one A.

– In the second column, since the first two sequences are clustered, the top 

two As contribute ½ each.  So, from column 2 we count 
1

2
+

1

2
+ 1 = 2 As.

– The fourth column contributes
1

2
 of an A.

• Block 2:
– There are three As, each occurrence occurs in a cluster of size one.

• So, in total there are 13/2 As.



BLOSUM Example 2

• So, the proportion of A's is (13/2)/17 = 13/34.

• We record the proportions for all symbols in the following table:



BLOSUM Example 2
- Counting Pairs -

• We turn next count A/B pairs.

• There are two occurrences in the first column of the first block 
which contribute 1/2 each, and in the second column of the 

second block the contribution is 
1

2
+

1

2
+ 1

– So, the total A/B count from the two blocks is 3.

• There are a total of 13 pairs in the blocks, four in the first block 
(each column contributes one pair, or more precisely, two half 
pairs) and nine in the second block.

• Thus, the proportion of A/B pairs is 3/13.



BLOSUM Example 2 – counting pairs

• We record the proportions for all pairs of symbols in 
the following table:

• The procedure is then carried out as before.



Iterative 
Refinement

• After obtaining a BLOSUM 
substitution matrix as just 
described:
– The matrix obtained is then used 

instead of the conservative 
“unitary” matrix to construct a 
second, less conservative, set of 
blocks.

• A new substitution matrix is 
then obtained from these 
blocks.

• Then the process is repeated a 
third time.
– Henikoff and Henikoff derive the 

final family of BLOSUM matrices 
from this third set of blocks.



BLOSUM Family of Matrices

• If the 0.85 similarity score criterion is 
adopted, the final matrix is called a 
BLOSUM85 matrix.

• In general, if clusters with X% identity are 
used, then the resulting matrix is called 
BLOSUMX.

– The BLOSUM matrices typically used are 
BLOSUM45, BLOSUM62, and 
BLOSUM80.

• Note that the larger-numbered matrices 
correspond to more recent divergence, and 
the smaller-numbered matrices correspond 
to more distantly related sequences.

– This is in contrast with PAM matrices 
where larger numbers correspond to 
more distantly related sequences.



BLOSUM62



Likelihood Ratios

A central feature of the BLOSUM substitution matrix 
calculation is the use of (estimated) likelihood ratios.

We will see next that the same is true of PAM 
matrices. 

It can be shown that likelihood ratios have a 
statistical optimality property, and this optimality 
property explains in part their use in the 
construction of both BLOSUM and PAM matrices.



Markov Models

• PAM matrices are based on Markov Models.
– We will not have time to discuss Markov 

Models in detail, but they’re extremely 
important in biology.

• A Markov Model models a process that 
evolves in time.

• Time proceeds in discrete steps.
–     t=1,2,3,…

• At each time there’s a ‘current state’.

• As time increments one unit, the current state 
changes according to fixed (time independent) 
probabilities.



Markov Models
• We represent a Markov Model with 

a graph.

– States are represented by nodes.

– Transitions are represented by directed 
edges (arrows).

• And we record the transition 
probabilities between states with a 
matrix.

• These are used to model evolution 
of an amino acid in a protein.

– Where the graph has 20 nodes

– Time in this case is ‘generation’

0.3 0.7 
0.4 0.6

Probability Transition

Matrix

Example Markov 

chain with two states

E

E

A

A



Markov Models
- basic facts -

• At each time there’s a current state.

• The process starts in some default state at 
time t=0, or it chooses an initial state 
according to an ‘initial state probability 
distribution’.

• The current state updates as time 
increments according to fixed 
probabilities.
– The process is ‘memoryless’ meaning 

the probability of being in a state at 
time t+1 only depends on what state 
it’s in at time t and does not depend 
on what state it was in at any previous 
time points.



Markov Example
- weather -

• Simple model to predict the weather each day 
from the previous day.



Markov Models
- more facts -

• Notation:  We denote the element in the ith row and jth 
column of the matrix M by pij.

• If the Markov model has transition matrix M, then the 
probabilities of transitioning between states under two 
increments of time is M2.

– And similarly, the probability of transitioning 
between states under n increments of time is Mn.

• You learn about matrix multiplication in linear algebra.

– Don’t worry if it’s new to you, just know it can be 
done.

– Mn is a matrix the same size as M and is probably 
not defined the way you would guess – in other 
words, it’s not just the matrix whose entries are 
the nth powers of the entries in the original matrix.



Scores from a Markov Model

• Given the Markov transition matrix, we turn it into a score by the formula

C ∙ log
𝑝𝑗𝑘

𝑝𝑘

• This is again a log likelihood ratio
– It may not look like one, but it’s derived from: pj pjk / pjpk

• The numerator is the (estimated) probability of finding amino acid j  
aligned to amino acid k  in real data.

• The denominator is the (estimated) probability of finding amino acid j  
aligned to amino acid k  in random data.

– 𝑝𝑗 and pk  are the background frequencies before the transition
• These give the initial state distribution.

– 𝑝𝑗𝑘 is the probability amino acid j turns into amino acid k in one time step.

• C is a constant, which is used to scale the numbers so that when we round to the 
nearest integer, the scores spread out nicely.



Derivations - PAM

The model is constructed 
from closely related 

sequences that can be 
easily aligned without 
gaps and where it is 

unlikely that two 
mutations happened at 

the same location.

Using closely related sequences, we need a large data set to represent all 
possible changes, enough times each, to estimate their probabilities.

Fortunately, the world is full of data for us to use for this purpose.

The Markov transition 
matrix M is inferred 

from the data by 
building phylogenetic 

trees and inferring 
ancestral states.

We’ve talked a bit about phylogenetics when we did multiple sequence 
alignment.



Example PAM

• We’ll construct PAM matrices assuming the 
data consists of one simple alignment of 3 
sequences of length 2.



Trees

• There are n = 5 “most parsimonious” 
trees leading to these three sequences 
at the leaves of the trees,



Trees en route to PAM

• Among these trees A is aligned with, and substituted 
for, B (or conversely) twice in each tree, leading to a 
total A/B count of 10.

• Division by the number of trees (5) leads to a  final 
contribution of 2 from this to the A/B count.



PAM Example

• A is aligned with A two times in tree 1, three times in 
tree 2, three times in tree 3, four times in tree 4, and 
three times in tree 5.

– Leading to a total of 15 A/A alignments.

• Each A/A alignment contributes 2 to the count, so that 
the total A/A count is 30.

• Division by the number of trees for this block leads to a 
final overall A/A count of 6.



PAM Example

• Similar calculations show that the contribution to the B/B count 
from this block is also 6.

• The final matrix of counts is then

• In general, there will be more than one block in the data set.  Each 
gives its own tree (or set of equally parsimonious trees).
– If so, we simply add the counts from the different blocks to obtain an 

overall count matrix.



Transition Matrix

• Suppose that the amino acids are numbered from 1 
to 20 and denote the j,k entry in the overall count 
matrix by Ajk.

• The next task is to use this count matrix to construct 
an estimated Markov chain transition matrix.
– This is the tricky part; the next slide might take a few passes to 

get a handle on.  Don’t get frustrated.

• For any j and k (not necessarily distinct), define ajk 
by



Transition Matrix

• For k ≠ 𝑗 let 𝑝𝑗𝑘 = 𝑐 ∙ 𝑎𝑗𝑘

– c is a positive scaling constant (to be determined shortly)

• Let   𝑝𝑗𝑗 = 1 − σ𝑘≠𝑗 𝑐𝑎𝑗𝑘

• It follows from these definitions that  σ𝑘 𝑝𝑗𝑘 = 1

• Now c can be chosen to be sufficiently small so that each 
pjj is non-negative.

• The matrix of pij’s then has the properties of a Markov 
chain transition matrix.

• We can further calibrate with c so that the expected 
proportion of changes in one time step is 0.01

copied from previous slide

for reference

• Fix 𝑗



Derivations 
- PAMn

• In general, the Markov transition matrix M 
is inferred from the data and calibrated so 
that there’s approximately 1% change in 
one unit of time.

– In Markov Chain parlance, the 
“weighted expected proportion” of 
amino acid changes is 0.01.

– We will not have time to delve into the 
details of what that means, but 
intuitively it means there’s a very small 
amount of change in one time unit.

• The substitution matrix thus defined is 
called PAM1.

• The matrix corresponding to Mn is called 
PAMn.



Derivations 
- PAM

• This matrix that represents 1% change is said to 
correspond to an evolutionary distance of 1 
PAM. 

– PAM stands for “Percent Accepted Mutation”

• Once we have the transition matrix M, we 
construct the matrix of scores as described 
earlier.

• The model with matrix M2 corresponds to two 
units of time, so 2 PAMs.

• In general, an evolutionary distance of n PAMs 
is given by the Markov model with transition 
matrix Mn.

• That is why PAM is a family of substitution 
matrices, indexed by the natural numbers.

– In this case, the larger the index, the more 
distant.

• Contrast with BLOSUM goes the 
opposite way.



PAM250



Choice of 
Matrix

• In theory, one should know the evolutionary 
distance between sequences to know which 
matrix to use.

– But alignment of the sequences is the most 
immediate way to assess this distance.
• And we need a substitution matrix to do that.

– Also, we are not always aligning just two 
sequences. 
• We may align many together in a Multiple Sequence 

Alignment.

– In this case there will be multiple evolutionary 
distances between pairs of sequences.

• All this adds up to the fact that we need to find 
good middle ground matrices that can be used as 
‘general purpose’ across a range of evolutionary 
distances.

• And it also means we must evaluate and quantify 
exactly how bad things go if matrices are inferred 
at one distance and used for another.



Choice of Matrix

• The BLOSUM62 is considered a good general-purpose matrix.

• According to Stephen Altschul

– When using a local alignment method three matrices should 
ideally be used: PAM40, PAM120 and PAM250, the lower 
PAM matrices will tend to find short alignments of highly 
similar sequences, while higher PAM matrices will find 
longer, weaker local alignments.

– When comparing sequences that were not known in advance 
to be related, for example when database scanning, a 120 
PAM matrix was the best compromise.

• We’ll discuss database scanning next.
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