
Introduction to
Bioinformatics

Gregory R. Grant
Genetics Department
ggrant@pennmedicine.upenn.edu

ITMAT Bioinformatics Laboratory

University of Pennsylvania

Lecturers

Gregory R. Grant

Topic 9

Cluster Computing

Teaching Assistants

Fall, 2023

mailto:ggrant@pennmedicine.upenn.edu

Cluster
Computing

A compute cluster is
what you can imagine. A
room full of computers.

But no monitors or
keyboards.

Sequential vs. Parallel

• Of course, this only works if Task 2 does not depend on the
output of Task 1 and Task 3 does not depend on Task 1 or 2, etc.

Cluster Compute Architecture

Cluster
Computing

• One master machine

• Multiple slave machines
– AKA nodes, CPU’s, processors, computers, etc.

• And one shared file system visible to all nodes.

➢ Every node can be used for computation except the master node.

❑ You log in to the master node.

❑ You run jobs on the slave nodes.

• There are special Unix command enabled on the master node to
submit jobs to the slave nodes.
– As well as commands to monitor jobs, etc.

– These commands are called the “architecture” of the cluster.

– There are two main architectures you are likely to encounter: SGE
(SunGridEngine) and LSF (Load Sharing Facility).

Shared and Unshared Memory

• Disk space (the file system) is universal and shared by
all nodes.

• But each node has its own Random Access Memory
(RAM) which is internal to the node and is not shared
across nodes.
– RAM is fast, but transient, memory. It is forgotten once

the job is completed.
– Multiple CPUs or Cores within a node may share a nodes

RAM, but it is not shared across nodes.

• When you submit a job, you typically have to tell it how
much RAM you will need, so the scheduler can make
sure it’s available on that node when your job is
executed.

Where to do cluster computing?

• If your institution does not have a cluster, you
can check one out by the hour from Amazon.
– UPenn has a powerful cluster called DART (used to be PMACS),

running the LSF architecture.

– But we will not be using DART.

• You can also check out a cluster from Amazon.
– Amazon offers many options; you can even make one

that works identically to DART.

– We have set up an Amazon cluster
for this class, that you can access
through the same interface we’ve
been using for Unix.

Terminology
• A node is basically a computer, without a monitor or

keyboard.

– A node consists of multiple CPUs and a CPU consists of multiple
Cores.

• A core is a serial processing unit that can only one job at
a time.

Parallelization

• When working with big data, we get jobs done by
distributing them across nodes on a compute
cluster.

– A job that takes 1,000 hours of serial compute can be
done in one hour if distributed to 1,000 nodes.

• But this only works if the job can be parallelized.

– Not all jobs can.

• If you have a pipeline, for example, where each
step depends on the previous, then you cannot
run the steps in parallel.

– Each job must wait for the previous one to finish.

Big Data in Biology

• Fortunately, analysis of big data in biology tends to be
amenable to parallelizable.

• For example, alignment of high-throughput
sequencing data.
– Aligners do not use information from the alignment of one

read to align any other.

• If you have one billion reads, you could in theory
distribute that to one billion nodes.
– But no cluster has a billion nodes.

– More likely you’d distribute 100 million reads to 10 nodes,
or 10 million reads to 100 nodes, depending on how fast
you need it and how many nodes you have available.

Queues and Schedulers
• Clusters are shared, usually by many users.

– Unless you’re privileged enough to have a cluster all to yourself.

• The number of nodes available at any given time depends not only
on the size of the cluster, but on the current demand being put on
it by users.

• Thus, you do not
submit jobs directly to
a node.
– Instead, you submit

jobs to “the queue”.
– Your jobs sit on the

queue waiting their
turn.

• Management of the
queue is handled by
software called a
‘scheduler’.

File System Collisions

• A cluster has
multiple nodes,
but only one file
system.

• Therefore, you can have multiple processors
trying to write to the same file at the same time.

• This is not a problem if you’re aware of it and
handle it gracefully.

Levels of Parallelization
• Parallelization can happen at many levels.
• You may break a study up by samples.

– E.g., align each sample in its own node.
• All reads from one sample go to the same node.

• Or you may break one sample up by reads.
– E.g., align chunks of 100,000 reads each in their own

nodes.
• 100,000 reads per node.

• A node can itself have multiple CPUs.
– So really the scheduler assigns your jobs to individual

CPU’s not individual nodes.
– One job may go to one CPU in one node while your

next job may go to a CPU in a different node.

Levels of Parallelization

• You can only submit jobs to a single CPU.
– Not to a single core within a CPU.

• But parallelization can happen even within the
single CPU.

• The program running on a single CPU, may still
parallelize the job to the multiple cores in the
CPU it has been assigned.
– That level of parallelization is not much of our

concern. It’s the concert of the programmer who
wrote the app.

– However, how many cores the app is allowed to use
may be an option to the application. So, it’s still
important to be aware of it.

Parallelization Flow

• In general, no matter how you are parallelizing
a job, two things need to be carefully
considered.

1. How to divide the job into independent
parts.

– Each part must be able to complete without
getting any information from the other parts.

2. How to merge the output of all the individual
nodes into one final output for the whole
job.

Parallelization Flow

• Often this is easy. Consider two examples:
1. Break a study into its individual samples.

2. Chop up a file of reads into chunks.

• Merging can also be easy.
1. Each sample gives one column in a spreadsheet.

2. Concatenate the alignments

• It can also be difficult, sometimes extremely
difficult, to split and/or merge information.
– Fortunately, bioinformatics tasks tend to be easily

parallelizable.

BIOL4536 Cluster
• We have attached a cluster to our BIOL4536 Unix server.

• The command to send a job to the cluster is “batch”.

• Run it with no params to see the usage.

submit-jobs

• The option ‘submit-jobs’ is used to submit a job to
the scheduler.

• Run it with the –h option to see the usage of the
submit-jobs option.

submit-jobs
• Here’s an example.

• Once the job is submitted, run ‘batch list-jobs’ to see the
status. They’ll go through several statuses before eventually
arriving at SUCCEEDED or FAILED.

• You do not need to wait for one to finish before submitting
another.
– That’s the whole point, they’ll all run in parallel.

	Slide 1: Introduction to Bioinformatics
	Slide 2: Cluster Computing
	Slide 3: Sequential vs. Parallel
	Slide 4: Cluster Compute Architecture
	Slide 5: Cluster Computing
	Slide 6: Shared and Unshared Memory
	Slide 7: Where to do cluster computing?
	Slide 8: Terminology
	Slide 9: Parallelization
	Slide 10: Big Data in Biology
	Slide 11: Queues and Schedulers
	Slide 12: File System Collisions
	Slide 13: Levels of Parallelization
	Slide 14: Levels of Parallelization
	Slide 15: Parallelization Flow
	Slide 16: Parallelization Flow
	Slide 17: BIOL4536 Cluster
	Slide 18: submit-jobs
	Slide 19: submit-jobs

